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ABSTRACT

Aeroelastic Analysis of Small-Scale Aircraft

Kent Roberts

The structural design of flight vehicles is a balancing act between maximizing loading

capability while minimizing weight. An engineer must consider not only the classical

static structural yielding failure of a vehicle, but a variety of ways in which structural

deformations can in turn, affect the loading conditions driving those deformations.

Lift redistribution, divergence, and flutter are exactly such dynamic aeroelastic phe-

nomena that must be properly characterized during the design of a vehicle; to do

otherwise is to risk catastrophe. Relevant within the university context is the design

of small-scale aircraft for student projects and of particular consideration, the DBF

competition hosted by AIAA. This work implements a variety of aeroelastic analysis

methods: K and PK with Theodorsen aerodynamics via Matlab, NASA EZASE, and

the FEMAP NX NASTRAN Aeroelasticity Package. These techniques are applied to

a number of baseline test cases in addition to two representative DBF wings. Both

wings considered ultimately indicated stability within reasonable flight conditions,

although each for a different reason. Analysis results for the Cal Poly 2020 wing,

a spar-rib construction emblematic of the collocation design approach, showed that

the wing was stable within expected flight regions. The USC 2020 wing model, a

composite top spar construction, exhibited unstable behavior, however this was well

outside the scope of expected flight conditions. The codebase developed as a part of

this work will serve as a foundation for future student teams to perform aeroelastic

analyses of their own and support continued aeroelastic research at Cal Poly - SLO.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Aerodynamic Assumptions . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Euler Beam Theory . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Assumed Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Prandtl Lifting Line Theory . . . . . . . . . . . . . . . . . . . 11

2.3.2 Theodorsen Aerodynamics . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Doublet Lattice Method . . . . . . . . . . . . . . . . . . . . . 13

2.3.3.1 Potential Flow . . . . . . . . . . . . . . . . . . . . . 14

2.3.3.2 Boundary Conditions . . . . . . . . . . . . . . . . . . 14

2.3.3.3 Acoustic Potential . . . . . . . . . . . . . . . . . . . 15

2.4 Flutter Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 K-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 PK-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Hodges Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.0.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Plate-Wing Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.0.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Spar-Rib Construction [Cal Poly - SLO 2020] . . . . . . . . . . . . . 39

4.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Single Top Composite Spar Cap [USC 2020] . . . . . . . . . . . . . . 47

4.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

APPENDICES

A K-Method.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B PK-Method.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF TABLES

3.1 Hodges wing parameters . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Flutter results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 EZASE AL wing properties . . . . . . . . . . . . . . . . . . . . . . 35

3.4 EZASE aluminum modal analysis . . . . . . . . . . . . . . . . . . . 36

3.5 EZASE AL case flutter results . . . . . . . . . . . . . . . . . . . . . 36

4.1 CP 2020 wing properties . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 CP 2020 modal analysis . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Balsa wood material properties . . . . . . . . . . . . . . . . . . . . 44

4.4 CP 2020 Vne results summary table . . . . . . . . . . . . . . . . . . 44

4.5 USC 2020 wing properties . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Standard unidirectional carbon fiber properties . . . . . . . . . . . 48

4.7 Polyurethane foam properties . . . . . . . . . . . . . . . . . . . . . 49

4.8 USC modal analysis summary . . . . . . . . . . . . . . . . . . . . . 49

4.9 USC 2020 flutter results summary . . . . . . . . . . . . . . . . . . . 50

vii



LIST OF FIGURES

1.1 Aeroelasticity and related fields [1] . . . . . . . . . . . . . . . . . . 1

1.2 Generic flight envelope of a Mach 2 aircraft (Hodges Fig 5.17) [1] . 3

2.1 Notations for cantilever wing . . . . . . . . . . . . . . . . . . . . . 10

2.2 A rectangular wing divided into Nx “ 3 by Ny “ 4 panels with 1{4

chord doublet lines marked in red and 3{4 chord locations in blue . 18

3.1 Hodges baseline V-g plot . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Hodges baseline V-ω plot . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 AL EZASE V-g plot . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 AL EZASE V-ω plot . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Link between underlying theories of analysis methods . . . . . . . . 38

4.1 CP 2020 Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 CP 2020 Mode shapes B1 (left) and T1 (right) . . . . . . . . . . . . 41

4.3 Load, shear, and moment distributions at failure via Prandtl lifting

line theory (LLT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 CP 2020 U-g plot dashed K-Theodorsen, solid NASTRAN . . . . . 43

4.5 CP 2020 U-ω plot dsahed K-Theodorsen, solid NASTRAN . . . . . 43

viii



4.6 Cal Poly - SLO 2020 Envelope [2] . . . . . . . . . . . . . . . . . . . 46

4.7 Composite single top spar (USC 2020) . . . . . . . . . . . . . . . . 47

4.8 USC 2020 Mode shapes B1 (left) and T1 (right) . . . . . . . . . . . 49

4.9 USC 2020 V-g plot dsahed K-Theodorsen, solid NASTRAN . . . . 49

4.10 USC 2020 V-ω plot dsahed K-Theodorsen, solid NASTRAN . . . . 50

ix



Nomenclature

µ mass ratio

ω circular frequency

ρ density

σ ratio of uncoupled frequencies for bending and torsion

AR aspect ratio

b semi-chord of wing strip

CG Center of gravity / center of mass location

CP Center of pressure / aerodynamic center location

EA Elastic axis location

EI bending rigidity

GJ torsional rigidity

Ip second polar area moment of inertia

L lift

lw, lθ,mw,mθ aerodynamic coefficients

M mach number

q dynamic pressure

r dimensionless radius of gyration

x



U velocity

V reduced velocity

Vne Velocity - Never Exceed

xθ static-unbalance

xi



Chapter 1

INTRODUCTION

aerodynamics

elasticitydynamics

static

aeroelasticity

dynamic
aeroelasticity

Figure 1.1: Aeroelasticity and related fields [1]

Flight vehicles fundamentally pose a design challenge of optimizing structures to en-

dure flight loads while minimizing weight. Aeroelasticity is the study of how structures

deform within a flow medium, encompassing the fields of both structural dynamics

and aerodynamics. Figure 1.1, attributed to Professor A. R. Collar in the 1940s

is commonly used as an introduction to this branch of study [1]. Fundamentally,

aeroelastic phenomena such as lift-redistribution, torsional divergence, and flutter

are characterized by the coupling of aerodynamic forces and the deformations driven

by those forces. For example, one could imagine a local twist in an airofoil’s angle
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of attack which could in turn increase that driving moment until an equilibrium is

reached; in fact, this is an aspect of lift-redistribution.

Aeroelastic phenomena are generally divided into two categories; static and dynamic.

As implied, static phenomena are considered independent of time, while dynamic

phenomena evolve with time. Perhaps the most fundamental behavior to consider

is the redistribution of lift based on structural deformations of a wing. As a wing

twists and bends, the effective angle of attack will vary as a function of span-wise

location, and thus in-turn changing the aerodynamic behavior of the wing. When the

aerodynamic forces and their structural reactions balance, a wing can be considered

stable.

Divergence is a static aeroelastic phenomena that naturally follows from lift redis-

tribution. When aerodynamic load builds up in such magnitude to overcome the

structural rigidity of a wing, it will fail. Within the analytical theory this commonly

manifests as an infinite displacement condition [1]. Torsional divergence (widely con-

sidered more common than bending divergence) occurs when the angle of twist at a

wing tip tends towards infinity. Note that this failure is distinct from strictly static

structural failure which is manifested by the yielding of material (most commonly

at the root of a wing where the bending moment is typically at a maximum). Even

if divergence is not expected within flight conditions, there are still several ways in

which such a structure could experience catastrophic structural failure due to dynamic

instability.

The current work will primarily focus on the flutter phenomenon. Flutter is a dy-

namic aeroelastic condition that arises when a structure extracts energy from the

surrounding flow. For flutter to arise, a system usually, although not strictly re-

quired, must have more than one degree of freedom and be considered a conservative

system within the surrounding flow field [3]. When the phase relationship between the
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Figure 1.2: Generic flight envelope of a Mach 2 aircraft (Hodges Fig 5.17)
[1]

degrees of freedom reaches a sufficient coupling condition, energy absorbed from the

flow leads to oscillations. These oscillations become unstable, growing in amplitude

until the structural rigidity of the wing is overcome [4]. The speed at which these

oscillations change from damped to purely harmonic motion is defined as the flutter

speed, beyond which lies conditions of instability and catastrophic failure [1].

The determination of the flutter boundary is a crucial part of defining an aircraft’s

flight envelope (the region of performance within which an aircraft is safe to operate).

A typical flight envelope for a Mach 2 aircraft is included in figure (1.2) [1]. Note

the limiting curves, No. 1 (a vehicle susceptible to flutter) and No. 2 (a “flutter-

safe” vehicle) represent flutter boundaries, beyond which the vehicle violates the

’flutter safety margin’, commonly defined as 15% for US military aircraft and 20%

for commercial transport aircraft over the flutter speed [1].

Among the tasks of practicing aeroelasticians is to seek the flutter speed that marks

the onset of critical instability for a wide range of flight conditions. Further anal-

ysis of sub-critical frequency and damping characteristics can inform modifications,
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increasing the reliability of the aircraft. A vast collection of both numerical and ana-

lytical approaches has been studied as means to determine the flutter boundary, but

perhaps the most physical insight is offered via analytical approaches [5].

Historically, flutter was first studied empirically. One of the earliest formulations

is attributed to Küssner who observed wing-aileron flutter in 1929 and published a

general formula relating critical speed and reduced frequency of a wing [6]. Another

major seminal work by Theodorsen (1934) derived an analytical aerodynamic model

for thin airfoils oscillating with small amplitudes in incompressible flow [7]. The

prevalence of Theodorsen’s work in modern literature speaks to its importance as a

foundation of the aeroelastic field. Within the near century that has passed since this

early work, a vast amount of literature has extended the field. Notably the following

texts are keystones of aeroelasticity, levied throughout this project: Bisplinhoff (1962)

Aeroelasticity [3], Fung (1955) An Introduction to the Theory of Aeroelasticity [6], and

Hodges (2002) Introduction to Structural Dynamics and Aeroelasticity [1].

The primary use of the present work is the completion of aeroelastic studies by uni-

versity teams within the preliminary and final design phases (such as a part of AIAA’s

DBF competition). In such a case, many university teams tend to prove out aeroelas-

tic stability via rules of thumb or flight testing, which could pose risk to the project.

Many student designs seek to locate wing elastic axis and center of gravity concentric

with the aerodynamic center at the quarter chord location. This is sound in theory as

the “less[er] separation between aerodynamic center and structural axis (elastic axis),

the lesser the static aeroelastic twist, and higher flutter and divergence air speeds”

[8]. However, the effects of aeroelastic phenomena are dictated by more than purely

the locations of the elastic, aerodynamic, and mass centers. Great care must always

be taken to ensure the structural integrity of aircraft designs.
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This work seeks to develop and apply analysis methods to determine the aeroelas-

tic characteristics (flutter speed, divergence dynamic pressure, lift-redistribution) of

small (DBF)-scale model aircraft and build a foundation code base for further aeroe-

lastic research at Cal Poly - SLO.

The K and PK methods are implemented within a MatLab environment and com-

pared against NASTRAN NX NASTRAN Aeroelasticy Package finite element method

[FEM] commonly used in industry, in addition to the ESAZE code developed for the

X-56A [9]. These methods are first compared and validated against Hodges and the

EZASE Aluminum beam test case, both fictitious baselines before select combinations

of these methods are applied to a sampling of past student DBF wings representing

a variety of structural designs.
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Chapter 2

METHODOLOGY

2.1 Assumptions

A number of key assumptions can significantly reduce the complexity of the aeroelastic

analysis, given the flight conditions of this project’s target application.

Compiled in the AGARD Manual on Aeroelasticity [4], a collection of parametric

studies exist that has established when the following theories apply based on work by

Lin, Reissner and Tsien [10], Miles [11], and Landahl, Mollo Christensen and Ashley

[12].

2.1.1 Aerodynamic Assumptions

1. Small disturbances can be assumed, considering that at the critical condition,

the amplitude of the oscillations are small. This is a critical assumption sup-

porting the adoption of linearized aerodynamic theory and linearized elasticity

in most cases [6]. Small disturbance theory can be assumed if

δ ăă 1, ωδ ăă 1, Mδ ăă 1, Mωδ ăă 1, (2.1)

where δl denotes the amplitude of oscillation or thickness of the wing (whichever

is larger), and ω the reduced frequency.
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2. Linearization of the problem is acceptable if any one of the three conditions

hold:

|M ´ 1| ąą δ2{3, ω ąą δ2{3, AR ăă δ´1{3. (2.2)

A linearized formulation of the problem is critical to apply analytical solution

methods.

3. Incompressible flow typically can be assumed if [13]:

M ăă 0.3 “ 102m{s pstandard airq. (2.3)

Incompressibility offers significant simplification and holds given the flight regime

of student projects.

4. Thin Airfoil Theory allows the adoption of lift-curve slope CLα “ 2πrrad´1s

as opposed to other values (derived from CFD for example) and applies when

there exists a small thickness to chord ratio.

2.1.2 Modeling Assumptions

1. Mode shape truncation is an important factor when adopting generalized

coordinates to describe the total displacement of a structure. Included mode

shapes must represent sufficient degrees of freedom to describe relevant total

displacements. This is analogous to including sufficient terms in a Fourier se-

ries expansion to accurately model a function. The effect of including higher

modes can be concluded from the values of the coupling matrix rAs. For a

homogeneous cantilever wing, Hodges makes the point that including modes

beyond the simplest single bending and torsional mode cases only adjust the

coupling terms by a factor less than 5% [1].
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2. NASTRAN mesh fidelity is critically important when constructing finite

element models. Setting a good minimum length and considering measures

of quality such as the minimum angle, aspect ratio, and Jacobian of elements

is typical practice when evaluating the quality of a mesh. For example, the

majority of elements which makeup the USC 2020 FEM later considered in the

study have a minimum angle in the range 60˝ ´ 40˝, and aspect ratio ă 3 and

a Jacobian ą 0.15. Only a high-quality finite element model can be expected

to yield accurate models.

2.2 Structure

2.2.1 Boundary Conditions

The wings considered are modeled with fixed-free boundary conditions, typical of a

cantilever beam. While body freedom flutter modes are a subject of interest, this

study shall not explore such effects, taking the wing-fuselage root attachment to be

a rigid boundary condition.

2.2.2 Euler Beam Theory

Structural beam analysis is a well-studied field, with several structural theories rele-

vant to the following regimes. If the ratio of the length to height of a beam, l{h ą 20

then the beam obeys the simplified kinematic assumptions and it is called an “Euler

beam”[14]. Much shorter beams with l{h ă 10 develop considerable shear stresses

in addition to bending stresses and must be treated by a different set of assump-

tions. Such beams are referred to as Timoshenko beams[14]. The intermediate range
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10 ă l{h ă 20 is a grey area where the simplifying assumptions of the elementary

beam theory gradually lose validity [14].

Within the relevant context of a wing’s aspect ratio and airfoil thickness, Euler beam

theory is a sufficient first order approximation and will be adopted in the proceeding

analytical studies. However, it is recognized that the finite element method considered

via NASTRAN is anticipated to yield more accurate results, hence all relative error

will be compared against the finite element results.

2.2.3 Assumed Modes

The assumed modes method is a common foundation of 3D structural dynamics. In

the relevant case of a beam in bending and torsion, displacements can generally be

represented as separable linear combinations of basis functions:

wpy, tq “

Nw
ÿ

i“1

ηiptqΨipyq, (2.4)

θpy, tq “

Nθ
ÿ

i“1

ϕiptqΘipyq. (2.5)

The mode shapes, Ψi and Θi are determined by finding the free vibration mode shapes

of the structure (in this case a wing) via simulation. For the case of a clamped-free

beam, these mode shapes can be represented by [1]:

Θi “
?
2sin

„

πpi ´ 1
2
q

l
y

ȷ

, i “ 1, 2, 3... (2.6)
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Ψi “ coshpαiyq ´ cospαiyq ´ βirsinhpαiyq ´ sinpαiyqs , i “ 1, 2, 3... (2.7)

Values of αi and βi are commonly found in reference tables, such as Table 3.1 in

Hodges [1].

Figure 2.1: Notations for cantilever wing

Additionally, the fundamental bending and torsional frequencies are respectively [1]:

ωwi “ pαilq
2

d

EI

ml4
, i “ 1, 2, 3... (2.8)

ωθi “
π

`

i ´ 1
2

˘

l

d

GJ

Ip
, i “ 1, 2, 3... (2.9)

Bending and torsional rigidity properties EI and GJ are to be defined prior to aeroe-

lastic analysis. In addition to the determination of the elastic center, and 2nd polar

area moment of area moment of inertia (Ip) which can be non-trivial to determine,

especially for non-uniform composite beams considered later.
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2.3 Aerodynamics

Aerodynamic theory is a crucial part of aeroelastic analysis. Flutter is inherently

a time dependent study, and thus steady aerodynamic theories, while plausible to

include in first order approximations, do not completely capture the behavior of the

system [1]. Hence, unsteady aerodynamic models must be considered.

Some relevant aerodynamic theories are:

‚ Prandtl Lifting Line Theory: steady finite span wing - practical for static aeroe-

lastic analysis

‚ Theodorsen Aerodynamics: harmonically oscillating finite wing - preferred in

analytical dynamic aeroelastic analysis

‚ Doublet Lattice Method (DLM): unsteady 3D panel method - well suited for

finite element methods

2.3.1 Prandtl Lifting Line Theory

Within Prandtl lifting line theory, a wing is modeled as a bound vortex located at

the quarter chord with an associated shed vortex sheet[15]. The circulation strength

of this vortex is taken to be a function of span, thus accounting for the finite ends of

the wing [15].

2.3.2 Theodorsen Aerodynamics

In 1936, Theodorsen derived a formulation of the flutter problem assuming a wing of

infinite span, small oscillations, within an incompressible and inviscid flow [7]. Given

11



these assumptions, Theodorsen determined the forces and moments on the airfoil via

2D potential flow theory.

Generally, the lift per unit span can be expressed as:

L1
“ ´πρ8b

3ω2
”

´lhpk,M8q
w̄

b
` lθpk,M8qθ̄

ı

, (2.10)

and the moment per unit span as:

M 1
“ πρ8b

4ω2
”

´mhpk,Minfq
w̄

b
` mθpk,Minfqθ̄

ı

. (2.11)

Theodorsen limited the above general equations considering only small displacements

of a pitching and plunging wings [7]:

L1
py, tq “ 2πρ8UbCpkq

„

Uθ ´ 9w ` b

ˆ

1

2
´ a

˙

9θ

ȷ

` πρ8b
2

´

U 9θ ´ :w ´ ba:θ
¯

, (2.12)

M 1
1
4
py, tq “ ´πρ8b

3

„

U 9θ ´
1

2
:w ` b

ˆ

1

8
´
a

2

˙

:θ

ȷ

. (2.13)

It is convenient to adopt the notation that Lw, Lθ, Mw, Mθ represent the aerody-

namic coefficients and are generally dependent on the free stream Mach number M8.

Considering the incompressibility assumption, these coefficients are only functions of

the reduced frequency k.
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Lw “ 1 ´
2iCpkq

k

Lθ “ a `
i

k

„

1 ` 2

ˆ

1

2
´ a

˙

Cpkq

ȷ

`
2Cpkq

k2

Mw “
1

2

Mθ “
3

8
´
i

k

, (2.14)

with Cpkq representing the well-known Theodorsen’s lift deficiency function[1],

Cpkq “
H

p2q

1 pkq

H
p2q

1 pkq ` iH
p2q

0 pkq
, (2.15)

where H
p2q
n pkq represents the Hankel function of the second kind of order n.

Note that this theory is complete when implemented within the K-Method which

purely considers harmonic motion. Theodorsen aerodynamics is still adopted in the

following PK-method presented, representing a hybrid amalgamation of non-harmonic

structural motion while still limiting aerodynamic forces to be functions of purely

frequency.

2.3.3 Doublet Lattice Method

The doublet lattice method was first introduced by Dr. Edward Albano and Dr.

William P. Rodden in 1969 as linearized formulation for oscillating, subsonic lifting

surfaces deriving a relationship for the normal velocity at a discrete panel surface

to the pressure difference across the surface [16]. In addition to the original work,

the 1992 report A Compilation of the Mathematics Leading to the Doublet Lattice

Method serves as a comprehensive guide to the subject [17]. The following section
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shall summarize broad strokes of the doublet lattice method, compiled from the two

works.

2.3.3.1 Potential Flow

Starting from Euler’s five differential equations for inviscid flow equations (one equa-

tion of continuity, three equations for momentum, and one state equation), pressure

(p) and density (ρ) distributions of the flow domain can be sought as function of ve-

locity potential, ϕ. For the sake of brevity, it serves to adopt an alternative definition

of velocity potential[17]:

ϕ “ Φ ´
U2t

2
(2.16)

Further, dividing ϕ into two components, a steady state component (bar) and a

small disturbance component (tilde) which is time dependent, in addition to a steady

state flow field yields the classical linear small disturbance velocity potential partial

derivative equation (PDE) [17]:

p1 ´ M2
qϕ̃xx ` ϕ̃yy ` ϕ̃zz ´

ˆ

2U

a20

˙

ϕ̃xt ´

ˆ

1

a20

˙

ϕ̃tt “ 0. (2.17)

2.3.3.2 Boundary Conditions

A 3D time variant surface of a wing can be defined as:

Fwpx, y, x, tq “ z ´ hmpx, y, tq ˘ htpx, yq “ 0. (2.18)
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Where ht, the thickness of the surface is assumed as a time invariant modification to

the mid plane hm deformations. On the surface boundary the flow is constrained to

be purely tangential.

BF

Bt
` V⃗ ¨ F “ 0. (2.19)

2.3.3.3 Acoustic Potential

It can be shown that equation 2.17 takes the form of the classical acoustic equation

2.20 via a coordinate transformation from the px, y, zq frame to the px0, y0, z0q frame

which moves with the atmosphere at constant velocity Uî [17].

ϕ
x0x0

` ϕ
y0y0

` ϕ
z0z0

´

„

1

a2

ȷ

ϕ
ττ

“ 0. (2.20)

Thus, it is intuitive to seek elementary solutions to the classical acoustic equation

which can be build (incrementally) to represent flows of higher complexity via the

principle of super position. Purely modeling a surface as a continuous sheet of source

elements is not sufficient to generate a pressure differential across the surface, given

the x-y plane symmetry of a source flow. Thus, a new fundamental flow pattern

known as the doublet warrants introduction. A doublet is conceptually the limit of

two sources of opposite strengths, inversely proportional to the separation between

them approach co-location. Such a flow enables discontinuous pressure jumps across

a surface and hence, is a favored candidate for elementary functions, combinations of

which can be combined to represent lifting surfaces.

It can be shown that the potential function of a doublet ϕd [17]
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ϕd “
B

Bz
pϕsq, (2.21)

with ϕs represents the potential function of a source element.

For a single oscillating doublet the corresponding potential take the form [17]:

ϕpx, y, zq “
´1

U
exp

„

´iωpx ´ ξq

U

ȷ
ż x´ξ

´8

exp
iωλ

U
ψpλ, y, zqdλ. (2.22)

Leveraging this expression, yields an equation for the downwash w [17]:

wpx, y, zq “

„

´1

4πρU

ȷ
ż ż

S

∆pKppx ´ ξq, py ´ ηq, zqdξdη. (2.23)

where K represents the introduction of the Kernel function [17]:

Kpx0, y0, z0q “ exp

ˆ

´iωx0
U

˙

B2

Bz2

„
ż x0

´8

1

R
exp

„

iω

Uβ2
pλ ´ MRq

ȷ

dλ

ȷ

, (2.24)

with

R “ pλ2 ` β2y20 ` β2z20q
1{2. (2.25)

Greater simplification is sought for the time begin via the limitation to planar wings,

pz Ñ 0q however the partial derivative within the Kernel function must first be

evaluated. The Kernel function now ultimately takes the form of [17]:
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Kpx0, y0, 0q “ lim
ϵÑ0

ˆ

K1

y20 ` ϵ2

˙

exp

„

´iωx0
U

ȷ

, (2.26)

with

K1 “ ´I1 ´

„

M |y0|

px20 ` β2y20q1{2

ȷ „

expp´ik1u1q

p1 ` u21q
1{2

ȷ

, (2.27)

I1 “

ż inf

u1

„

expp´ik1uq

p1 ` u2q3{2

ȷ

du, (2.28)

k1 “
ω|y0|

U
, (2.29)

u1 “
Mpx20 ` β2y20q1{2 ´ x0

|y0|β2
. (2.30)

Note a variety of singularities may occur when y0 Ñ 0, y “ η, x0 “ y0, etc. The

doublet lattice approximation (for which this method derives its name) is an em-

pirical approximation to evaluate the integrals of equations 2.27 through 2.30. The

continuous doublet sheet (equation 2.23) is replaced by a set of finite length pressure

doublet lines located at 1{4 chord of each panel as in figure 2.2.

The quarter chord location is arbitrarily defined but a widely accepted position to

locate the doublet lines. Ultimately further reduction yields a relationship between

the downwash w and the pressure differential ∆p of another element. Implementing

a summation of the effects across all panels, the downwash at a px, y, 0q location due

to Nx by Ny number of discretized panels

17



Figure 2.2: A rectangular wing divided into Nx “ 3 by Ny “ 4 panels with
1{4 chord doublet lines marked in red and 3{4 chord locations in blue

wpx, y, 0q “

„

1

4πρU

ȷ Nx
ÿ

i“1

Ny
ÿ

j“1

r´∆pij∆ηijsrB0pxi, yjq ` B1pxi, yjq ` B2pxi, yjqs. (2.31)

Evaluating equation 2.31 at 3{4 chord of each for each panel element and noting the

surface tangential flow constraint (downwash, w “ 0 or a non-zero relative motion if

the panel is in motion) yields an Nx ` Ny set of equations with Nx ` Ny unknown

pressure differentials across each element.

Relating the pressure differential into terms of generalized forces is carried out via

tF uAIC “
1

2

ˆ

ρ

ρ0

˙

ρ0U
2
rBsrDs

´1
rW sthu, (2.32)

where thu is the vector of generalized structural coordinates, rW s maps the degrees of

freedom of the structural model to the aerodynamic control points of the aerodynamic

model (within FEMAP NX NASTRAN this concept is represented by “splines”),

rDs´1 relates the downwash to the non-dimensional relative pressure across each
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panel, and rBs that represents the integration of the pressures on each panel into

forces and moments on the structural model [18].

The doublet lattice method is impractical to implement by hand and hence better

suited for computation codes. The development of such codes represents significant

effort within the aerospace industry. Of note is that, although limitedH7WC was one

of the first widely adopted DLM codes created by Douglas, Long Beach, California

[19]. The exact code included in the FEMAP NX NASTRAN Aeroelasticity page

is proprietary although the user manual does suggest the DLM implementation is

based on the N5KA code developed by Giesing et al. with at the Air Force Flight

Dynamics Laboratory [20].

2.4 Flutter Solution Methods

A number of solution techniques have been developed to address the flutter problem.

Initially methods considered purely oscillatory behavior represented by reduced fre-

quency k. Historically, a number of studies considered including a correctional term

for structural damping via a term ‘g’. Flutter occurs when g “ 0 or close to the actual

structural damping. This gave rise to the ubiquitous V ´ g plotting technique. In

which the damping of various mode shapes are plotted against free stream velocity.

Note that both normalized, and non-normalized depictions of this data is common

throughout the literature. This work favors presenting the full dimensional values.

The p-method is a relaxation of the k-method, now considering non-harmonic motion.

However, modern techniques often favor finite element methods such as included in the

FEMAP NX NASTRAN Aeroelasticity package for their robust broad applicability.
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Throughout, it is convenient to operate with the following reduced set of variables

(matching Hodges):

r2 “
Ip

mb2
, σ “

ωh

ωθ

µ “
m

ρ8πb2
, V “

U

bωθ

xθ “ e ´ a , ν “
pU

b
,

(2.33)

where:

‚ r represents the dimensionless radius of gyration of the section

‚ σ denotes the ratio of uncoupled frequencies for bending and torsion

‚ µ is the mass ratio; and V represents the reduced velocity

‚ xθ is the static-unbalance

‚ p (the name sake of this method) represents a dimensionless unknown variable

defined relative to ν

2.4.1 K-Method

The K-Method operates under the assumption that the wings act in purely oscillatory

motion. This is true only for the onset of flutter when the damping term goes to zero.

Starting from Hodges Equations 5.129 for the generalized forces using Theodorsen

aerodynamics:
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$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

“ ´πρ8b
2l

»

—

–

r∆s barAsT

barAs b2pa2 ` 1
8
qr∆s

fi

ffi

fl

»

—

–

:η

:ζ

fi

ffi

fl

´πρ8bUl

»

—

–

2Cpkqrδs ´br1 ` 2p1
2

´ aqCpkqsrAsT

2bp1
2

` aqCpkqrAs b2p1
2

´ aqr1 ´ 2p1
2

` aqCpkqsr∆s

fi

ffi

fl

»

—

–

9η

9ζ

fi

ffi

fl

´πρ8bU
2l

»

—

–

r0s ´2CpkqrAsT

r0s ´bp1 ` 2aqCpkqr∆s

fi

ffi

fl

»

—

–

η

ζ

fi

ffi

fl

. (2.34)

To condense notation take:

$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

“ ´πρ8b
2l

„

Th1

ȷ

»

—

–

:η

:ζ

fi

ffi

fl

´πρ8bUl

„

Th2

ȷ

»

—

–

9η

9ζ

fi

ffi

fl

´πρ8bU
2l

„

Th3

ȷ

»

—

–

η

ζ

fi

ffi

fl

, (2.35)

and the corresponding equations of motion from Hodges 5.130

ml

»

—

–

r∆s ´bxθrAsT

´bxθrAs b2r2r∆s

fi

ffi

fl

»

—

–

:η

:ζ

fi

ffi

fl

`

»

—

–

EI
l3

rBs r0s

r0s GJ
l

rT s

fi

ffi

fl

»

—

–

η

ζ

fi

ffi

fl

“

$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

(2.36)

ml

„

M

ȷ

»

—

–

:η

:ζ

fi

ffi

fl

`

„

K

ȷ

»

—

–

η

ζ

fi

ffi

fl

“

$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

. (2.37)

Now, considering the generalized coordinates to be exponential functions representing

purely harmonic motion of the form:

ηiptq “ η̄iexppiωtq (2.38)
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ζiptq “ ζ̄iexppiωtq, (2.39)

the differential terms become:

9ηi “ iωη̄iexppiωtq, 9ζi “ iωζ̄iexppiωtq,

:ηi “ ´ω2η̄iexppiωtq, :ζi “ ´ω2ζ̄iexppiωtq.

The equations of motion reduce to:

πρ8b
2l

„

Th1

ȷ

ω2
´πρ8bUl

„

Th2

ȷ

iω´πρ8bU
2l

„

Th3

ȷ

“ ml

„

M

ȷ

ω2
`

„

K

ȷ

. (2.40)

Multiplying all by 1
U2 to get

πρ8l

„

Th1

ȷ

b2ω2

U2
´πρ8l

„

Th2

ȷ

i
bω

U
´πρ8bl

„

Th3

ȷ

“ ml

„

M

ȷ

ω2

U2
`

1

U2

„

K

ȷ

. (2.41)

Using the definition of reduced frequency k “ bω
U

and further reduction yields:

πρ8l

„

Th1

ȷ

k2 ´ πρ8l

„

Th2

ȷ

ik ´ πρ8bl

„

Th3

ȷ

“
ml

b2

„

M

ȷ

k2 `
1

U2

„

K

ȷ

. (2.42)
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Note that for a cantilever beam the stiffness matrix can be reduced in terms of modal

frequencies:

rKs “ ml

»

—

–

rω2
wi

s r0s

r0s b2r2rω2
θi

s

fi

ffi

fl

“ ml

„

ω

ȷ

. (2.43)

Incorporating this and further reduction also using the dimensionless mass ratio µ:

πρ8l

„

Th1

ȷ

k2 ´ πρ8l

„

Th2

ȷ

ik ´ πρ8bl

„

Th3

ȷ

“
ml

b2

„

M

ȷ

k2 `
ml

U2

„

ω

ȷ

. (2.44)

Multiplying all by b2{ml:

b2πρ8

m

„

Th1

ȷ

k2 ´
b2πρ8

m

„

Th2

ȷ

ik ´
b2πρ8

m
b

„

Th3

ȷ

“

„

M

ȷ

k2 `
b2

U2

„

ω

ȷ

. (2.45)

Adopting the reduced mass variable µ “ m
πρ8b2

:

„

Th1

ȷ

k2 ´

„

Th2

ȷ

ik ´ b

„

Th3

ȷ

“ µ

„

M

ȷ

k2 ` µ
b2

U2

„

ω

ȷ

. (2.46)

Multiply in Nw rows by 1
b
and Nθ rows by 1

b2
and adopting a normalized variable η

b

thus effectively multiplying the Nw columns (left-hand) by b:
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´k2

»

—

–

r∆s arAsT

arAs pa2 ` 1
8
qr∆s

fi

ffi

fl

´ ik

»

—

–

2Cpkqrδs ´r1 ` 2p1
2

´ aqCpkqsrAsT

2p1
2

` aqCpkqrAs p1
2

´ aqr1 ´ 2p1
2

` aqCpkqsr∆s

fi

ffi

fl

´

»

—

–

r0s ´2CpkqrAsT

r0s ´p1 ` 2aqCpkqr∆s

fi

ffi

fl

“ µk2

»

—

–

r∆s ´xθrAsT

´xθrAs r2r∆s

fi

ffi

fl

` µ
b2

U2

»

—

–

rω2
wi

s r0s

r0s rr2ω2
θi

s

fi

ffi

fl

.

(2.47)

The frequency matrix can further be reduced by leveraging the ratio between succes-

sive modal frequency of a homogeneous cantilever beam and adopting σ as a variable

representing the ratio of the 1st bending frequency over the 1st torsional frequency:

»

—

–

rω2
wi

s r0s

r0s rr2ω2
θi

s

fi

ffi

fl

“ ω2
θ1

»

—

—

–

σ2

„

´

α2
i

α2
1

¯2
ȷ

r0s

r0s

„

r2
´

γi
γ1

¯2
ȷ

fi

ffi

ffi

fl

. (2.48)

For notation purposes, let

»

—

—

–

σ2

„

´

α2
i

α2
1

¯2
ȷ

r0s

r0s

„

r2
´

γi
γ1

¯2
ȷ

fi

ffi

ffi

fl

“

„

Υ

ȷ

. (2.49)

Thus the complete flutter matrix (condensing equation 2.47) is of the form:

„

F

ȷ

“ µk2
„

M̃

ȷ

´ k2
„

˜Th1

ȷ

´ ik

„

˜Th2pkq

ȷ

´

„

˜Th3pkq

ȷ

` µk2
´ωθ1

ω

¯2
„

Υ

ȷ

, (2.50)

and the fundamental problem takes the form of:
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„

F

ȷ

»

—

–

η̄
b

ζ̄

fi

ffi

fl

“

„

0

ȷ

. (2.51)

For non-trivial solutions, we need detF “ 0. The typical technique for approaching

such a problem is to specify the expected flight conditions (which constrains ρ8) and

then specify a test range of k values. For each of these k values, the determinate

equation yields multiple complex roots. These roots correspond to the number of

mode shapes considered. In general these roots will be complex; however, at the

flutter boundary one of these roots is expected to represent purely harmonic motion.

As one would expect, the K-method is limited in accuracy outside of purely har-

monic motion [21]. However the method is still widely popular for its speed. Matlab

implementation is included in appendix A.

Mode shapes and generalized coordinates are purely harmonic functions of time.

Given this, behavior outside of harmonic motion (g ‰ 0) should be carefully inter-

preted. However, considering the flutter boundary occurs when g “ 0, this method

is sufficiently accurate to calculate flutter speed and frequency.

2.4.2 PK-Method

The PK-Method is a hybrid amalgamation of the K and analytical P method, by

which the aerodynamic behavior is still considered as purely a function of frequency,

while the structural behavior is relaxed to include damped and un-damped behavior.

Once again starting from Hodges Equations 5.129 for the generalized forces using

Theodorsen aerodynamics:
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$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

“ ´πρ8b
2l

»

—

–

r∆s barAsT

barAs b2pa2 ` 1
8
qr∆s

fi

ffi

fl

»

—

–

:η

:ζ

fi

ffi

fl

´πρ8bUl

»

—

–

2Cpkqrδs ´br1 ` 2p1
2

´ aqCpkqsrAsT

2bp1
2

` aqCpkqrAs b2p1
2

´ aqr1 ´ 2p1
2

` aqCpkqsr∆s

fi

ffi

fl

»

—

–

9η

9ζ

fi

ffi

fl

´πρ8bU
2l

»

—

–

r0s ´2CpkqrAsT

r0s ´bp1 ` 2aqCpkqr∆s

fi

ffi

fl

»

—

–

η

ζ

fi

ffi

fl

.

(2.52)

To condense notation take:

$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

“ ´πρ8b
2l

„

Th1

ȷ

»

—

–

:η

:ζ

fi

ffi

fl

´πρ8bUl

„

Th2

ȷ

»

—

–

9η

9ζ

fi

ffi

fl

´πρ8bU
2l

„

Th3

ȷ

»

—

–

η

ζ

fi

ffi

fl

. (2.53)

The corresponding equations of motion form Hodges 5.130

ml

»

—

–

r∆s ´bxθrAsT

´bxθrAs b2r2r∆s

fi

ffi

fl

»

—

–

:η

:ζ

fi

ffi

fl

`

»

—

–

EI
l3

rBs r0s

r0s GJ
l

rT s

fi

ffi

fl

»

—

–

η

ζ

fi

ffi

fl

“

$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

(2.54)

ml

„

M

ȷ

»

—

–

:η

:ζ

fi

ffi

fl

`

„

K

ȷ

»

—

–

η

ζ

fi

ffi

fl

“

$

’

&

’

%

Ξw

Ξθ

,

/

.

/

-

. (2.55)

Now, considering the generalized coordinates to be exponential functions (no longer

strictly harmonic) of the form:

ηiptq “ η̄iexppνtq (2.56)
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ζiptq “ ζ̄iexppνtq, (2.57)

where ν “
pU
b
, and where p is an unknown, dimensionless, complex eigenvalue. The

differential terms become:

9ηi “ νη̄iexppνtq, 9ζi “ νζ̄iexppνtq,

:ηi “ ν2η̄iexppνtq, :ζi “ ν2ζ̄iexppνtq.

However, key to the PK method the generalized forces are maintained as pure func-

tions of the the oscillatory frequency k, noting the relationship that k “ Imagppq.

The equations of motion reduce to:

´πρ8b
2l

„

Th1

ȷ

ν2 ´πρ8bUl

„

Th2

ȷ

ν´πρ8bU
2l

„

Th3

ȷ

“ ml

„

M

ȷ

ν2 `

„

K

ȷ

. (2.58)

Multiplying all by 1
ν2
:

´πρ8b
2l

„

Th1

ȷ

´πρ8bUl

„

Th2

ȷ

1

ν
´πρ8bU

2l

„

Th3

ȷ

1

ν2
“ ml

„

M

ȷ

`

„

K

ȷ

1

ν2
. (2.59)

Using the definition of ν and further reduction:
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´πρ8b
2l

„

Th1

ȷ

´πρ8b
2l
1

p

„

Th2

ȷ

´πρ8b
3l

1

p2

„

Th3

ȷ

“ ml

„

M

ȷ

`
b2

p2U2

„

K

ȷ

. (2.60)

Note that for a cantilever beam the stiffness matrix can be reduced in terms of modal

frequencies:

rKs “ ml

»

—

–

rω2
wi

s r0s

r0s b2r2rω2
θi

s

fi

ffi

fl

“ ml

„

ω

ȷ

, (2.61)

and incorporating this and further reduction also using the dimensionless mass ratio

µ:

´

„

Th1

ȷ

´
1

p

„

Th2

ȷ

´
b

p2

„

Th3

ȷ

“ µ

„

M

ȷ

` µ
b2

p2U2

„

ω

ȷ

. (2.62)

Multiply in Nw rows by 1
b
and Nθ rows by 1

b2
and adopting a normalized variable η

b

thus effectively multiplying the Nw columns (left-hand) by b:

´

»

—

–

r∆s arAsT

arAs pa2 ` 1
8
qr∆s

fi

ffi

fl

´
1

p

»

—

–

2Cpkqrδs ´r1 ` 2p1
2

´ aqCpkqsrAsT

2p1
2

` aqCpkqrAs p1
2

´ aqr1 ´ 2p1
2

` aqCpkqsr∆s

fi

ffi

fl

´
1

p2

»

—

–

r0s ´2CpkqrAsT

r0s ´p1 ` 2aqCpkqr∆s

fi

ffi

fl

“ µ

»

—

–

r∆s ´xθrAsT

´xθrAs r2r∆s

fi

ffi

fl

` µ
b2

p2U2

»

—

–

rω2
wi

s r0s

r0s rr2ω2
θi

s

fi

ffi

fl

.

(2.63)
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The frequency matrix can further be reduced by leveraging the ratio between succes-

sive modal frequency of a homogeneous cantilever beam and adopting σ as a variable

representing the ratio of the 1st bending frequency over the 1st torsional frequency:

»

—

–

rω2
wi

s r0s

r0s rr2ω2
θi

s

fi

ffi

fl

“ ω2
θ1

»

—

—

–

σ2

„

´

α2
i

α2
1

¯2
ȷ

r0s

r0s

„

r2
´

γi
γ1

¯2
ȷ

fi

ffi

ffi

fl

. (2.64)

For notation purposes, let

»

—

—

–

σ2

„

´

α2
i

α2
1

¯2
ȷ

r0s

r0s

„

r2
´

γi
γ1
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Thus the complete flutter matrix (condensing equation 2.63) is of the form:

„

F

ȷ

“ µp2
„
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ȷ
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„

˜Th1

ȷ
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˙
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„

Υ

ȷ

, (2.66)

where the tilde denotes the new normalized matrices equation 2.63. And the funda-

mental problem takes the form of:

„

F

ȷ

»

—

–

η̄
b

ζ̄

fi

ffi

fl

“

„

0

ȷ

. (2.67)

For non-trivial solutions, we set detF “ 0, and solving this determinant equation will

yield the sought solution set.
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The solution technique implemented in appendix B is adopted from Hassig 1971. At

a given set velocity U, we iteratively solve for p and k via the Regula Falsi method.

The PK method is considered to yield higher accuracy outside harmonic motion yet

should perfectly agree with the K-method implementation at purely harmonic motion

(which is the flutter boundary of an ideal un-damped system).
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Chapter 3

IMPLEMENTATION

The following methods were applied to the case studies:

‚ K - Theodorsen (via assumed modes) [Current work MATLAB]

‚ PK - Theodorsen (via assumed modes) [Current work MATLAB]

‚ K - DLM (via assumed modes) [NASA EZASE]

‚ PKNL - DLM (finite element) [FEMAP NX NASTRAN AEROELASTICY

PACKAGE]

The FEMAP NX NASTRAN aeroelasticity package is largely considered standard

in contemporary industry and thus considered the highest fidelity method of those

presented in this work. Other implementations are investigated for 1st order approx-

imations of increasing complexity.

It was determined that modifying the EZASE code to implement a PK method was

not worth the effort, given that critical results (at the flutter boundary) would yield

identical results.

This chapter is divided into the following analysis sections:

‚ The Hodges base model to validate current work K and PK method

‚ A baseline flat-plate wing to bridge across finite element and K/PK methods of

current the work
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‚ The California Polytechnic State University - SLO (CP) 2020 to represent rib-

strut balsa construction

‚ The University of Southern California (USC) 2020 to represent composite top

spar structure

Student design teams (follow design cycles analogous to professional projects) thus

a 1st order approximation of the K - Theodorsen method may be better suited for

an early design study trade space as opposed to investing resources to implement a

complete finite element method. The primary purpose of this work is to explore such

a case.

3.1 Hodges Baseline

Parameter Value

a ´1{5

e ´1{10

µ 20

r2 6{25

σ 2{5

Table 3.1: Hodges
wing parameters

Hodges [1] includes a hypothetical reference example defined

via normalized variables that is commonly considered stan-

dard in literature as a validation case for flutter analysis

methods. This current work adopts the example to validate

the K and PK methods originally written. Table 3.1 repro-

duces these wing parameters.

Figure 3.1 is a plot of normalized velocity versus damping,

commonly referred to as a ”V-g” plot. Note that each line

represents motion in its respective mode shape. This data can

be queried for when g “ 0. The damping constant crossing

from negative to positive indicates that the system is becoming unstable, passing

through purely harmonic motion at g “ 0. This boundary defines the onset of flutter.

Note that “real-world” systems commonly have an inherent amount of damping and
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thus this is a conservative estimation of the flutter speed. As a companion to the V-g

plot, Figure 3.2 is a plot of normalized velocity versus frequency of each respective

mode shape. Note how the two modes coalesce, a tale-tell sign of the modal coupling

present during flutter conditions. Table 3.2 shows the quantitative results of this

analysis, indicating excellent agreement between the application of the current K and

PK methods with the reference literature.

Figure 3.1: Hodges baseline V-g plot

Reference[1] K-Method PK-Method Relative Error
Vf 2.17 2.227 2.227 3%

ωf{ωθ 0.6443 0.638 0.638 1%

Table 3.2: Flutter results

3.1.0.1 Discussion

The Hodges baseline case proved out good agreement between published literature

and the current work implementation of the K and PK methods. This case also

demonstrates that the K and PK methods yield identical results at the conditions of
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Figure 3.2: Hodges baseline V-ω plot

purely harmonic motion (g “ 0). The slight variation from the reference is attributed

to the approximation of Theodorsen’s function used in the problem set from which

the results were taken.
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3.2 Plate-Wing Test Case

Parameter Value

a 0

e 0

µ 280.63

r2 0.33

c 0.10 rms

L 1.00 rms

GJ 749.60 rNm2s

EI 574.17 rNm2s

σ 0.263

Table 3.3: EZASE
AL wing properties

A further validation case was considered in both the current

matlab codebase and the FEMAP NX NASTRAN Aeroe-

lasticity package. It was then compared against the NASA

EZASE code. The EZASE aluminum-like plate example

is considered with dimensions 1 rms X 0.1 rms X 0.01 rms,

and aluminum-like material properties E “ 68.9e9 rPas,

ν “ 0.4354. Table 3.3 further defines the parameters of

the plate wing. Preliminary to the flutter analysis, a modal

analysis was performed with result summarized in table 3.4.

Figure 3.3 shows the U-g plot of all methods considered,

while figure 3.4 represents the corresponding frequency be-

havior. Qualitative results are summarized in table 3.5. Flut-

ter speed is the critically important value, and the results of

the K and PK methods are self-consistent and in good agree-

ment (« 5%) with the NASTRAN results, however the EZASE results appear offset

(« 10%) from these values. The various methods agree that the 1st torsional mode

goes unstable and qualitatively follows the same behavior. Of secondary concern, fre-

quency values are not in as good of quantitative agreement, however plot 3.4 shows

qualitatively the various methods follow similar trends.
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Modal Frequency Analysis
TORSIONAL MODES BENDING MODES

T1 [Hz] T2 [Hz] B1 [Hz] B2 [Hz] B3 [Hz]
NASTRAN 150.935 459.915 8.452 52.958 149.3008
Mechanics [MATLAB] 143.582 430.749 8.1603 51.1399 143.1934
% err 5% 6% 3% 3% 4%
EZASE 153.3775 463.0801 8.285 51.9146 145.651
% err 2% 1% 2% 2% 2%

Table 3.4: EZASE aluminum modal analysis

Figure 3.3: AL EZASE V-g plot

Flutter Results
UF [m/s] % err (rel. to NASTRAN) ωF [Hz] % err

NASTRAN 405.93 - 108.3 -
K Method 428.08 5% 68.24 37%
PK Method 428.08 5% 68.24 37%
EZASE 445.72 10% 87.1 19%

Table 3.5: EZASE AL case flutter results
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Figure 3.4: AL EZASE V-ω plot

3.2.0.1 Discussion

Four different methods were applied to the plate wing test case, each yielding re-

sults that differed non-negligibly. This case was initially considered with only the

K, PK, and NASTRAN methods. Within this subset of results, it’s obviously ap-

parent that the flutter velocities were in near perfect alignment, although the flutter

frequency posed significantly more deviation between the MATLAB and NASTRAN

models. This disagreement served as motivation to seek a DLM implemented within

MATLAB, leading to the adoption of the NASA EZASE code as an additional anal-

ysis method. The EZASE code links characteristics of the other methods, evaluating

aerodynamic behavior via DLM (shared with NASTRAN), while maintaining a struc-

tural model more consistent with the current work’s K, PK method implementation in

MATLAB. However, the results from the EZASE code posed yet more questions. The

flutter frequency showed improvement, but the flutter speed was out of agreement

with previous NASTRAN and K, PK methods.
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Figure 3.5: Link between underlying theories of analysis methods

A leading hypothesis is that this deviation is attributed to the use of polynomial struc-

tural mode shapes within the N5KA code [19]. This method, while more generalized,

could deviate from the analytical mode shape solutions relevant to modeling a wing

as a cantilever beam implemented within the other methods (current work MATLAB,

and NASA EZASE). This would be a non-issue if a polynomial of sufficiently high

order was considered within NASTRAN but such information must be held within

the proprietary code. It’s the author’s working theory that this distinction between

the methods may actually grow in magnitude during conditions of mode coupling

at higher speeds, explaining how the frequency initially agrees at free vibration, 0

velocity. The relationship between analysis methods is layout in figure 3.5.
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Chapter 4

RESULTS AND DISCUSSION

Based on the previous discussion of the implemented baseline cases, two methods

were down selected for application to two DBF wings. The K-method was chosen

for its speed and popularity as a preliminary design phase analysis [1]; additionally,

a complete finite element model is built for detailed analysis within FEMAP NX

Nastran Aeroelasticity package. Such a finite element method is largely considered

industry standard and thus considered the highest fidelity results presented in this

study in lieu of a practical wind tunnel testing. Each wing was selected to represent

a class of construction methods typically adopted by university teams.

4.1 Spar-Rib Construction [Cal Poly - SLO 2020]

4.1.1 Results

Figure 4.1: CP 2020 Wing

The Cal Poly SLO 2020 DBF wing is an example of spar-rib construction entirely

made of balsa wood. While balsa wood has a wide range of material properties, those

used in this study are included in table 4.3. Also important to note that with this
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interpretation, the balsa material is considered to instantaneously fail rather than

yield. The wing characteristics are defined in table 4.1.

Parameter Value

a ´0.48

e ´0.48

µ 0.68

r2 0.1

c 0.5 rms

L 0.762 rms

GJ 552.9 rNm2s

EI 707.1 rNm2s

σ 0.263

Table 4.1: CP 2020
wing properties

Modal analysis results are included in table 4.2, with depic-

tion of the 1st bending and torsional modes in figure 4.2.

First, a material failure case was considered. Done in reverse

to the typically analysis, a maximum Vne (Velocity Never-

Exceed) was sought with an equivalent N-loading which gen-

erated the failure stress at the wings root given the estab-

lished wing structure. The results of this static structural

analysis are presented in figure 4.3. U-g and U-ω plots in

figures 4.4 and 4.5 respectively. With a summary of results

in table 4.4.

As expected, the collocation of the elastic axis, center of grav-

ity, and aerodynamic center limit the aeroelastic effects ob-

served. The critically important Vne is recognized during fail-

ure of the material in bending at the wing root. This case

aligns with general DBF teams’ assumption about neglecting aeroelastic behavior;

however, such an analysis is still critical to consider given that “even when the mass

and flexural axes are aligned with the aerodynamic center on the quarter chord, flutter

can still occur” [8].

Modal Frequency Analysis
TORSIONAL MODES BENDING MODES

T1[Hz] T2[Hz] T3[Hz] B1[Hz] B2[Hz] B3[Hz]
Mechanics [MATLAB] 240.212 720.636 1201.06 63.35 397.058 1111.77
NASTRAN 240.2123 693.17 1135.65 61.38 348.1578 836.0672
% err 0% 4% 6% 3% 14% 33%

Table 4.2: CP 2020 modal analysis
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Figure 4.2: CP 2020 Mode shapes B1 (left) and T1 (right)
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Figure 4.3: Load, shear, and moment distributions at failure via Prandtl
lifting line theory (LLT)
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Figure 4.4: CP 2020 U-g plot dashed K-Theodorsen, solid NASTRAN

Figure 4.5: CP 2020 U-ω plot dsahed K-Theodorsen, solid NASTRAN
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Parameter Value
E 3e9rPas

ν 0.29
ρ 160rkg{m3s

Table 4.3: Balsa wood material properties

Vne Summary
Static Aeroelastic
Failure in Bending

V [m/s] N-equivalent
63.1 11.96

Torsional Divergence
V [m/s]
509

Comment: Well beyond expected envelope
Dynamic Aeroelastic

Flutter [NX NASTRAN]
V [m/s] ωrHzs

- -
Comment: Flutter behavior is not observed

Table 4.4: CP 2020 Vne results summary table

4.1.2 Discussion

The CP 2020 wing represents a spar-rib construction entirely composed of balsa

wood. Emblematic of the co-location student philosophy, both the preliminary K-

method analysis and higher fidelity finite element analysis did not indicate flutter

behavior. This behavior is expected given that the general philosophy of collocating

the aerodynamic center (CP), elastic axis (EA), and center of gravity (CG), generally

weakens dynamic effects [22]. NASA TN D-3125, A New Approach to the Explanation

of the Flutter Mechanism, lays out a distinctive catalog of flutter behavior types [22].

Although the parametric analysis presented in the NASA technical report was limited

to 2D considerations, the case studies provide valuable context. Considering a typical

section reduction of the CP 2020 wing, the collocation of the CP, CG, and EA does

44



not explicitly match any of the categories; however, the behavior as evident in the

NASTRAN results of figure 4.5 show the low frequency bending mode trends slightly

down before settling at a potential pole, while the higher frequency torsional mode

generally trends downward. This behavior could be analogous to case A3 consider in

NASA TN D-3125, with the caveat that the torsional mode frequency trends inversely

proportional with speed as opposed to proportional to it [22]. In a similar vein to

the stability of case A3, a preliminary conclusion to draw from figures 4.5 and 4.4

is that the CP 2020 wing is stable (flutter is not expected before static structural

failure). To emphasize that such a wing is not indestructible a static analysis is

performed to determine the maximum loading lift distribution and the equivalent

free stream speed which are otherwise typically set as requirements prior to wing

design. Thus this aeroelastic analysis would leave the flight envelope, included as fig.

4.6 [2] unchanged.

Ultimately this analysis proved the stability of the particular CP 2020 wing model

considered. This is not to say that all other such wings adopting the collocation

strategy are likewise insusceptible to flutter. It remains theoretically possible for

wing of such design to still exhibit flutter behavior [1].
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Figure 4.6: Cal Poly - SLO 2020 Envelope [2]

46



4.2 Single Top Composite Spar Cap [USC 2020]

4.2.1 Results

Figure 4.7: Composite single top spar (USC 2020)

Parameter Value

a ´0.1538

e ´0.1636

µ 35.623

r2 0.376

σ 0.199

c 0.304 rms

L 0.70 rms

ρIp 0.028

Table 4.5: USC
2020 wing proper-
ties

The USC 2020 wing featured a single top spar composite

plate a fixed to a foam airfoil volume. The top spar is made

up of a stepped layered unidirectional carbon fiber. Each ply,

estimated to be 0.01 rins thickness is step in a laminate from

a 4-ply thickness from the root to 3 rins spanwise location, a

3 to 2 ply step at 8 rins, an finally a 2 to 1 ply step at 14 rins

location. Unidirectional standard carbon fiber is modeled

as a 2D orthotropic material with properties summarized in

table 4.6 [23]. Polyurethane foam material properties are

summarized in table 4.7 [24].

To build Ip and other relevant parameters for the k-method

a typical cross section was considered of within the 3-ply

region of the laminate. However, the ratio of fundamental

frequencies σ was adopted from the NASTRAN modal analysis as an input into the

k-method.
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Parameter Value
E1 1.35e11 rPas

E2 1.00e10 rPas

G 5e9 rPas

ν 0.3
ρ 1600 rkg{m3s

Table 4.6: Standard unidirectional carbon fiber properties

In this case K-method and NASTRAN flutter prediction are in excellent agreement

in both flutter speed and frequency.

4.2.2 Discussion

The USC 2020 wing, representative of a top spar composite construction did yield

flutter behavior in both the k-method and NASTRAN finite element analysis meth-

ods. The flutter speed and frequency between these two methods were within 5%

agreement. The typical section of the USC 2020 wing includes an EA slightly aft CG,

which are both offset aft of the CP. This would fit into case B3a of the NASA TN

D-3125 [22]. Figures 4.9 and 4.10 show indications of corresponding behavior with

the frequencies of the mode shapes coalescing near flutter boundary.

Given that the flutter speed is beyond the incompressibility assumption, one might

consider including transonic effects; however, such a study would be irrelevantly out-

side of expected flight conditions. Thus, while the wing was shown to exhibit flutter

behavior, the analysis undertaken indicates flutter is not practically expected and

therefore the wing should be stable within expected flight conditions. Surprising a

flight envelope was not included within the USC 2020 Design Report, however the

reported cruise speed 161ft{sp49m{sq is well below the determined flutter speed [25].
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Parameter Value
E 7.4e8 rPas

ν 0.3
ρ 425 rkg{m3s

Table 4.7: Polyurethane foam properties

Figure 4.8: USC 2020 Mode shapes B1 (left) and T1 (right)

Modal Frequency Analysis
TORSIONAL MODES BENDING MODES
T1 [Hz] B1 [Hz] B2 [Hz]

NASTRAN 72.14 14.42 86.21

Table 4.8: USC modal analysis summary

Figure 4.9: USC 2020 V-g plot dsahed K-Theodorsen, solid NASTRAN
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Figure 4.10: USC 2020 V-ω plot dsahed K-Theodorsen, solid NASTRAN

Flutter Results
UF [m/s] ωF [Hz]

NASTRAN 291.045 40.223
K Method 280.33 42.384
% err 4% 5%

Table 4.9: USC 2020 flutter results summary
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Chapter 5

FUTURE WORK

Physical wind tunnel testing is the ultimately authoritative truth for the determina-

tion of flutter speeds and frequencies. The application of code base and the other

aeroelastic analysis methods to a wind tunnel study would be the logical next step

of this work. The results would not only give insight into the slight discrepancies of

the cases studied within the current work, but also serve as a keystone standard of

all future aeroelastic studies at the university.

Additionally, the in-house codebase could be expanded to include more advanced

aerodynamic and structural properties (considering wing sweep, dihedral angle, etc.),

while additional value could also be added by considering body modes of the en-

tire aircraft. These features would broadly expand the applicability of the analysis

methods.

Within the context of DBF collegiate teams, the current work lays the foundation of

a broader adoption of robust aeroelastic analyses in place of current rules of thumb,

however a compiled stand-alone application resembling XFLR5 (a common tool used

among groups for performance and stability simulations) would certainly encourage

faster adoption. In the longer-term interest of developing such a tool, future grad-

uate projects at Cal Poly - SLO could continue to expand the in-house code base

while also expanding a reference library of previous DBF aircraft design aeroelastic

characteristics.
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Chapter 6

CONCLUSION

Small, lightweight aircraft are not immune from potentially catastrophic aeroelastic

phenomena such as flutter and divergence. Within the context of DBF university

teams, such dynamic analyses have often fallen a step short of consideration and in

place, rules of thumb are adopted. This work surveyed a multitude of analysis meth-

ods for the determination of flutter speed, ranging from a K-method via assumed

mode to bringing to bear the industry standard of a finite element method-based

analysis via the NX NASTRAN FEMAP Aeroelasticity package, complete with dou-

blet lattice aerodynamics.

Four distinctive flutter analysis methods were considered: the K method with Theodorsen

aerodynamics, the PK method with Theodorsen aerodynamics, the K method with

doublet lattice aerodynamics (DLM) via NASA EZASE code and the PKNL method

with DLM aerodynamics (via NASTRAN). After validation of the in-house matlab

code of the K and PK Theodorsen methods, all were applied to a validation plate wing

case. The results of this case were in good agreement among subgroups of analysis

approaches. While one may expect near perfect alignment between methods, further

investigation found fundamental differences in the structural modal reduction of the

various techniques, specifically between EZASE and NASTRAN. The application of

both EZASE and NASTRAN to the same baseline plate-wing case was made in the

interest of a purely apples-to-apples comparison; however, the results told a different

story with the EZASE predicted flutter speed being an outlier of the otherwise ex-

cellent agreement of the other methods, and the flutter frequency middling the other

predictions. As discussed in section 3.2.0.1, this difference is likely attributed to how
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the structural mode shapes are modeled. Recognizing this, the analysis methods were

down selected to the K method with Theodorsen aerodynamics and NASTRAN for

application to real wings flown in previous student projects.

The first DBF wing considered was the CP 2020. Representative of a typical box-

spar balsa wood construction, this wing also notably featured a design strategy of

collocation of the aerodynamic center (CP), elastic axis (EA), and center of masses

(CG). In theory reducing the separation of all attributes generally reduces dynamic

effective by shortening effectiveness moment arms. However, this strategy does not

inherently eliminate flutter and divergence. In the CP 2020 case however, it was

shown that this design was stable within the flight regime considered and would not

exhibit any flutter behavior, especially at velocity below the Vne dictated by material

failure at the wing root.

The K-method proved more suitable for near homogeneous wings as evident by the

excellent agreement of the flutter speed [280.33m{s] and frequency [40.2Hz] results

of the USC 2020 wing model considered. Note that the flutter speed was beyond the

bounds of typical flight conditions and approaching transonic conditions. While none

of the methods consider a full treatment of transonic aerodynamics, the analysis as

presented proves that flutter would not be expected within the incompressible flow

regime assumption M ăă 0.3 “ 102m{s. Although flutter behavior is predicted for

this wing model and hence unstable, it is well outside of expected flight conditions,

and thus the neglect of flutter considerations is retroactively justified.

With the caveat that a good wind tunnel test is worth a thousand expert opinions,

this work surveyed two student project wing designs and determined that flutter was

not expected within reasonable flight conditions. However, student teams designing

aircraft such as those a part of the AIAA DBF competition should consider imple-

menting more robust aeroelastic analysis methods in favor of generalized rules of
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thumb. Analytical methods such as the K-method in the present work are suitable

for early design cycles, especially of fairly uniform wings. However, it is important to

note that wings of more complex construction (such as a semi-dual spar composite)

may not be accurately represented by such a method. At present, the highest fidelity

aeroelastic analysis methods are finite element methods such as those included in the

FEMAP NX NASTRAN aeroelasticity package. Such an analysis is suited for later

phases of the design process.
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APPENDICES

Appendix A

K-METHOD.M

1 % AEROELASTIC ANALYSIS
2 % K−METHOD
3 % [Kent Roberts 2020−2021]
4

5 clear all;
6

7 %% Wing Definition (Unifrom)
8 %[HODGES]
9 a = −1/5;

10 e = −1/10;
11 x theta = e − a;
12 rSquared = 6/25;
13 mu = 20;
14 sigma = 2/5;
15

16 %% FLUTTER K METHOD
17

18 % Specify number of assumed modes in bending and torsion
19 N w = 1;
20 N theta = 1;
21

22 % ===== Equations of Motion =====
23 % [Hodges 5.130]
24

25 % Create off−diagnoal matrix A
26 A = zeros(N theta, N w);
27

28 % Build coupling matrix
29 for i=1:N theta
30 phi = @(x) sin(GAMMAil(i)*x);
31

32 for j=1:N w
33

34 beta = (cosh(ALPHAil(j))+cos(ALPHAil(j)))...
35 /(sinh(ALPHAil(j))+sin(ALPHAil(j)));
36

37 psi = @(x) cosh(ALPHAil(j)*x) − ...
cos(ALPHAil(j)*x) ...

38 − beta*(sinh(ALPHAil(j)*x) − ...
sin(ALPHAil(j)*x));

39

40 A(i,j) = integral(@(x)phi(x).*psi(x),0,1);
41 end
42 end
43
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44 M = mu*[eye(N w)...
45 −x theta*A';...
46 −x theta*A...
47 rSquared*eye(N theta)/2]; %/2
48

49 %% ===== Generalized Forces =====
50 C = @(k) besselh(1,2,k) / ...

(besselh(1,2,k)+1i*besselh(0,2,k));
51

52 Th1 = −[eye(N w),...
53 a*A';...
54 a*A,...
55 (aˆ2 + (1/8))*eye(N theta)/2];%/2
56

57 Th2 = @(k) −(1i/k)*[2*C(k)*eye(N w),...
58 −(1 + 2*(0.5 − a)*C(k))*A';...
59 2*(0.5+a)*C(k)*A,...
60 (0.5−a)*(1−2*(0.5+a)*C(k))*eye(N theta)/2];%/2
61

62 Th3 = @(k) −(1/ kˆ2)*[zeros(N w),...
63 −2*C(k)*A';...
64 zeros(N theta,N w),...
65 −(1+2*a)*C(k)*eye(N theta)/2];%/2
66

67 %% Sigma2 matrix
68

69 B wi = zeros(N w);
70 for i = 1:N w
71 B wi(i,i) = (ALPHAil(i)/ALPHAil(1))ˆ4;
72 end
73

74 T wi = zeros(N theta);
75 for i = 1:N theta
76 T wi(i,i) = (GAMMAil(i)/GAMMAil(1))ˆ2;
77 end
78

79

80 Sigma2 = [sigmaˆ2 * B wi,...
81 zeros(N w,N theta);...
82 zeros(N theta, N w),...
83 T wi];
84

85 %define Z to be complex, (w theta 1/w)ˆ2 * (1+ig)
86 syms Z
87 Z mat = [eye(N w)*Z...
88 zeros(N w,N theta);...
89 zeros(N theta,N w)...
90 eye(N theta)*Z*rSquared/2]; %ADDED /2
91

92 %% K−Method
93 K min = 0.01;
94 K max = 2;
95 N = 200;
96

97 K = [linspace(K min,K max,N−2),5,10];
98

99 % Create array to store solutions
100 X = zeros(N w+N theta, N);
101

102 for i = 1:length(K)
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103 Flutter Matrix = M − Th1 + Th2(K(i)) +Th3(K(i)) − ...
mu*Sigma2*Z mat;

104

105 X(:,i) = double(vpasolve(det(Flutter Matrix)==0,Z));
106

107 fprintf("%i %% \n",round((i/N)*100));
108 end
109

110

111 %% FLutter Output
112

113 % Create arrays for frequencies, damping, and reduced ...
speed

114 omegaOverOmegaTheta1 = zeros(N w+N theta, N);
115 g = zeros(N w+N theta, N);
116 V = zeros(N w+N theta, N);
117 X i = zeros(N w+N theta, N);
118 X r = zeros(N w+N theta, N);
119

120

121 parfor i=1:N w+N theta
122 X i(i,:) = imag(X(i,:));
123 X r(i,:) = real(X(i,:));
124 omegaOverOmegaTheta1(i,:) = 1./sqrt(real(X(i,:)));
125 g(i,:) = imag(X(i,:))./real(X(i,:));
126 V(i,:) = 1./(K.*sqrt(real(X(i,:))));
127 end
128

129 %V−omega plot
130

131 figure(1)
132 hold on
133

134 for i=1:N w+N theta
135 if i==1
136 plot(V(i,:), omegaOverOmegaTheta1(i,:), ...

'r−−','LineWidth',2)
137 grid on
138 xlabel('$\frac{U}{b \omega {\theta 1}}$', ...

'interpreter','latex','FontSize',22)
139 ylabel('$ \frac{\omega}{\omega {\theta 1}}$', ...

'interpreter','latex','FontSize',22)
140 elseif i==2
141 plot(V(i,:), omegaOverOmegaTheta1(i,:), ...

'b−−.','LineWidth',2)
142 legend('$ \omega 1/\omega {\theta 1}$ [K]', ...

'$ \omega 2/\omega {\theta 1}$ ...
[K]','interpreter','latex','Location',...

143 'eastoutside','FontSize',14)
144 end
145 end
146 xlim([0 2.5])
147 hold off
148

149 %% V−g plot
150

151 figure(2)
152 hold on
153

154 for i=1:N w+N theta
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155 if i==1
156 plot(V(i,:), g(i,:), 'r−−','LineWidth',2)
157 grid on
158 xlabel('$\frac{U}{b \omega {\theta 1}}$', ...

'interpreter','latex','FontSize',22)
159 ylabel('$ g$', ...

'interpreter','latex','FontSize',22)
160 elseif i==2
161 plot(V(i,:), g(i,:), 'b−.','LineWidth',2)
162 legend('$g 1$ [K]','$g 2$ ...

[K]','interpreter','latex','Location'...
163 ,'eastoutside','FontSize',14)
164 end
165 end
166 xlim([0 2.5])
167 hold off
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Appendix B

PK-METHOD.M

1 % AEROELASTIC ANALYSIS
2 % PK−METHOD
3 % [Kent Roberts 2020−2021]
4

5 clear all;
6

7 %% Wing Definition (Unifrom)
8 %[HODGES]
9 a = −1/5;

10 e = −1/10;
11 x theta = e − a;
12 rSquared = 6/25;
13 mu = 20;
14 sigma = 2/5;
15

16 %% FLUTTER PK METHOD
17

18 % Specify number of assumed modes in bending and torsion
19 N w = 1;
20 N theta = 1;
21

22 nat freq = zeros(1,N w+N theta); %used for initial p ...
guess

23 for i = 1:N w
24 nat freq(i) = sigma * (ALPHAil(i)/ALPHAil(1))ˆ2;
25 end
26 for i = N w+1:N w+N theta
27 nat freq(i) = (GAMMAil(i)/GAMMAil(1));
28 end
29

30 % Create off−diagnoal matrix A
31 A = zeros(N theta, N w);
32

33 % Build coupling matrix
34 for i=1:N theta
35 phi = @(x) sin(GAMMAil(i)*x);
36

37 for j=1:N w
38

39 beta = (cosh(ALPHAil(j))+cos(ALPHAil(j)))/...
40 (sinh(ALPHAil(j))+sin(ALPHAil(j)));
41

42 psi = @(x) cosh(ALPHAil(j)*x) − ...
cos(ALPHAil(j)*x) ...

43 − beta*(sinh(ALPHAil(j)*x) − ...
sin(ALPHAil(j)*x));

44

45 A(i,j) = integral(@(x)phi(x).*psi(x),0,1);
46 end
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47 end
48

49 M = mu*[eye(N w)...
50 −x theta*A';...
51 −x theta*A...
52 rSquared*eye(N theta)/2]; %/2
53

54 %% ===== Generalized Forces =====
55 % [Hodges 5.129]
56 % Theodorsen
57 C = @(k) besselh(1,2,k) / ...

(besselh(1,2,k)+1i*besselh(0,2,k));
58

59 Th1 = −[eye(N w),...
60 a*A';...
61 a*A,...
62 (aˆ2 + (1/8))*eye(N theta)/2];%/2
63

64 Th2 = @(k) −[2*C(k)*eye(N w),...
65 −(1 + 2*(0.5 − a)*C(k))*A';...
66 2*(0.5+a)*C(k)*A,...
67 (0.5−a)*(1−2*(0.5+a)*C(k))*eye(N theta)/2];%/2
68

69 Th3 = @(k) −[zeros(N w),...
70 −2*C(k)*A';...
71 zeros(N theta,N w),...
72 −(1+2*a)*C(k)*eye(N theta)/2];%/2
73

74 %% Sigma2 matrix
75 B wi = zeros(N w);
76 for i = 1:N w
77 B wi(i,i) = (ALPHAil(i)/ALPHAil(1))ˆ4;
78 end
79

80 T wi = zeros(N theta);
81 for i = 1:N theta
82 T wi(i,i) = (GAMMAil(i)/GAMMAil(1))ˆ2;
83 end
84

85 Sigma2 = [sigmaˆ2 * B wi,...
86 zeros(N w,N theta);...
87 zeros(N theta, N w),...
88 T wi*rSquared/2];
89 %% PK−Method
90

91 Flutter Matrix = @(p,k,V) (pˆ2)*(M) − (pˆ2)*(Th1) − ...
p*(Th2(k)) − Th3(k)...

92 +mu*(1 / (Vˆ2))*(Sigma2);
93

94 syms p
95

96 V arr = 0.1:0.1:5; %velocities [m/s]
97

98 N end = length(V arr) * (N w+N theta);
99

100 for i = 1:length(V arr) %for each speed
101 for j = 1:N w+N theta %for each mode shape
102 if i == 1 %first speed specificied, build ...

first guess based on nat. freq
103 %[HASSIG 1971]
104 F = 0.01;
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105 G = 1;
106 p(j,2) = 0 + 1i*(nat freq(j)/V arr(i));%0 ...

+ 1i*(nat freq(j)*b/V arr(i));
107 p(j,1) = −F*imag(p(j,2)) + 1i*G*imag(p(j,2));
108 n = 2;
109 else
110 %build from last
111 p(j,1) = (V arr(i−1)/V arr(i))*p(j,2);
112 p(j,2) = (V arr(i−1)/V arr(i))*pc(j,i−1);
113 n = 2;
114 end
115

116 %1st itr for loop condition
117

118 while nď20 %set max iteration
119 F det(j,n−1) = ...

vpa(det(Flutter Matrix(p(j,n−1),...
120 imag(p(j,n−1)),V arr(i))));
121 F det(j,n) = ...

vpa(det(Flutter Matrix(p(j,n),...
122 imag(p(j,n)),V arr(i))));
123

124 if abs(norm((F det(j,n−1)−F det(j,n)))) < ...
1e−5 %tolerance

125 break;
126 end
127

128 if n == 20
129 disp("max itr")
130 end
131

132 p(j,n+1) = (p(j,n)*F det(j,n−1) − ...
p(j,n−1)*F det(j,n))...

133 /(F det(j,n−1)−F det(j,n)); %Reglua Falsi ...
[Hassig]

134

135 n = n+1;
136 end
137 %save converged values
138 pc(j,i) = p(j,n);
139

140 %status
141 status = 100*(((i−1)*(N w+N theta) + j) / N end);
142 fprintf('%i %% \n',round(status));
143 end
144 end
145

146 %% post process
147 [pc r, pc c] = size(pc);
148

149 for i = 1:pc r
150 for j = 1:pc c
151 w(i,j) = imag(pc(i,j))*V arr(j);
152 end
153 end
154

155 w norm = w;
156

157 for i = 1:pc r
158 for j = 1:pc c
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159 if imag(pc(i,j)) == 0
160 gamma(i,j) = real(pc(i,j))*1000; %instead ...

of dividing by 0
161 else
162 gamma(i,j) = real(pc(i,j))/imag(pc(i,j));
163 end
164 end
165 end
166

167 V = V arr;
168

169 %% plot
170

171 figure(1)
172 hold on
173

174 plot(V,w norm,'LineWidth',2)
175

176 grid on
177 xlim([0 2.5])
178 ylim([0 1.1])
179

180 xlabel('$\frac{U}{b \omega {\theta 1}}$', ...
'interpreter','latex','FontSize',22)

181 ylabel('$ \frac{\omega}{\omega {\theta 1}}$', ...
'interpreter','latex','FontSize',22)

182 legend('$ \omega 1/\omega {\theta 1}$ [K]', '$ ...
\omega 2/\omega {\theta 1}$ [K]','$ ...
\omega 1/\omega {\theta 1}$ [PK]', '$ ...
\omega 2/\omega {\theta 1}$ ...
[PK]','interpreter','latex',...

183 'Location','eastoutside','FontSize',14)
184 %title('PLATE WING: Freq. Plot (PK−method)')
185

186 %% Gamma
187 figure(2)
188 hold on
189

190 plot(V,gamma,'LineWidth',2)
191

192 grid on
193 xlim([0 2.5])
194 ylim([−1 1])
195

196 xlabel('$\frac{U}{b \omega {\theta 1}}$', ...
'interpreter','latex','FontSize',22)

197 ylabel('$ g$', 'interpreter','latex','FontSize',22)
198 legend('$g 1$ [K]','$g 2$ [K]','$g 1$ [PK]','$g 2$ ...

[PK]','interpreter','latex','Location',...
199 'eastoutside','FontSize',14)
200 ylim([−0.5,0.1])
201 xlim([0,2.5])
202 %title('PLATE WING: Vg Plot (PK−method)')
203

204 %% HODGES FIG 5.22
205 GAMMA w th = real(pc.*V arr);
206 xlim([0 2.5])
207

208 figure()
209 hold on
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210

211 plot(V,GAMMA w th,'LineWidth',2)
212

213 grid on
214 xlim([0 2.5])
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