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Abstract

A Review of Propulsive Descent Fuel Optimization Guidance Methods for Planetary

Pinpoint Landings

by

Kent L. Roberts

In this paper, the APDG (Apollo Powered Descent Guidance), A2PDG (Augmented Apollo

Powered Descent Guidance), and SOCP (Second-Order Cone Programming) powered descent

guidance methods are explored and compared. While fuel optimization is the focus of any solu-

tion to the soft-landing problem, it is clear that the aforementioned guidance techniques adopt

fundamentally different approaches. APDG is one of the most straightforward and simplistic

techniques examined. A2PDG builds upon the heritage of the APDG method to introduce a

tunable implicit guidance law that enables a trade between trajectory shaping and propellant

consumption. The SOCP method examined represents a modern approach leveraging the fore-

front of optimal control theory research into SOCP problems and the interior point methods

(IPMs) used to solve them. The SOCP technique achieves both landing-error and fuel opti-

mization, while respecting nearly all constraints and boundary conditions representative of the

physical problem. By identifying the strengths and weaknesses of available powered descent

guidance methods, goals can be set to derive new techniques and the best-fit guidance scheme

can be matched to the demands of future space exploration missions.
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Chapter 1

Introduction

This year (2019) will mark the fiftieth anniversary of the Apollo lunar landing and

the seventh operational year of NASA’s Curiosity rover on the surface of Mars. While the

destinations, goals, and technologies of these two missions differ greatly, both relied on powered

descent guidance to accomplish their objectives. Powered descent is the final phase of many

entry, descent and landing (EDL) architectures, during which a payload is guided and softly

landed on a planet’s or moon’s surface. This is accomplished by firing rocket engines retro-

propulsively (counter to a spacecraft’s motion) to decelerate the vehicle and guide it towards

a destination. While not all extra-terrestrial surface exploration missions include a terminal

powered descent, the prevalence of the maneuver is increasing as planetary exploration missions

grow in mass and narrow in focus.

The Curiosity rover represents the mass limit of modern Mars EDL capabilities at

approximately 1 metric ton; estimates for a human mission to Mars demand between 40-80
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metric tons of landed mass (Braun and Manning, 2007). Mars has an atmosphere capable of

partially decelerating a spacecraft from orbital velocities; however, as the mass of entry vehicles

increase, the deceleration available via atmospheric drag diminishes. This follows since drag

is proportional to a vehicle’s cross-sectional area that typically scales at a rate sub-linearly

with its mass. Therefore as missions increase in mass, the powered descent phase will account

for a larger portion of a vehicle’s total deceleration. Refinement of powered descent guidance

techniques will directly benefit these future missions.

Fuel optimization during a powered descent is critically important to a planetary ex-

ploration mission’s feasibility and ultimate success. Fuel optimal trajectories require less pro-

pellant to be transported from an initial Earth launch to a mission’s target. This allows a greater

fraction of the mission’s overall mass budget to be dedicated to scientific instrumentation. Al-

ternatively, for a set amount of propellant, fuel optimal trajectories expand the envelope of

correction maneuvers available to avoid hazards and adapt to initial state errors or uncertainties.

Historically, the first generation of Mars surface missions (Viking, Mars Pathfinder,

and the Mars Exploration Rovers) were exploration driven. The nature of these missions were

forgiving of large landing ellipses (a measure of landing location uncertainty) on the order of

100 km (Brand et al., 2004). In contrast, modern Mars exploration programs have evolved to

pursue focused scientific goals, targeting specific surface features such as craters or potential re-

gions of sub-surface water ice. Improvements in powered descent guidance directly contributes

towards providing the landing precision that modern missions demand.

The powered descent guidance problem (also referred to as the soft-landing problem)

involves designing a fuel-optimized thrust profile that transports a vehicle from initial conditions
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to soft-landing conditions on a planet’s or other celestial body’s surface. Broadly speaking, the

powered descent guidance problem is classified as a finite-horizon optimal control problem and

while a closed-form analytical solutions exist in the one-dimensional case it does not remain

optimal when extended to the full three-dimensional case if proper state and control constraints

are applied (Akmee et al., 2013). A number of solution methods have been developed, two of

which, the Augmented Apollo Powered Descent Guidance (A2PDG) and Second-Order Cone

Programming (SOCP) techniques serve as the primary focus of this study. A2PDG builds upon

the heritage of the APDG method to introduce a tunable implicit guidance law enabling a trade

between trajectory shaping and propellant consumption, while the SOCP method represents a

modern approach leveraging the forefront of optimal control theory.

Chapter 2 will present a one-dimensional formulation of the problem, summarizing

the landmark optimization work of Meditch (1964) and demonstrating a simplified Apollo based

guidance algorithm, while Chapters 3 and 4 will discuss the A2PDG and SOCP solution meth-

ods respectively. Chapter 5 will compare all methods discussed, with conclusions being pre-

sented in Chapter 6.
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Chapter 2

The 1D Powered Descent Guidance

Problem

Consider a spacecraft attempting to land on a flat planetary surface surrounded by

vacuum (Figure 2.1) and assume the following: 1) the vehicle only experiences the forces of

gravitational attraction to the surface and the thrust it generates, 2) the thrust vector is con-

strained normal to the surface, 3) gravity does not vary with altitude, 4) the thrust (and hence

propellant flow rate) is limited between zero and a set maximum, and 5) that the vehicle has

sufficient fuel to perform a propulsive landing.

Given this, the vehicle’s motion will be governed by the following equation:

ẍ =
−veṁ

m
−g. (2.1)

where x represents the altitude of the vehicle, ve denotes the effective exhaust velocity and is
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Figure 2.1: Schematic of the 1D soft-landing problem

always positive (ve ≥ 0). The mass of the vehicle is represented by m, while ṁ denotes the mass

flow rate and is bounded by extrema α and 0 (−α≤ ṁ≤ 0).

The one-dimensional powered descent guidance problem is thus framed as the fol-

lowing system of equations:

ẋ1 = x2; ẋ2 =−
ve

x3
u−g; ẋ3 = u (2.2)

with

x1 = x; x2 = vx; x3 = m. (2.3)

The variable u represents the control parameter ṁ, or equivalently the magnitude of the com-

manded thrust Tc (note that the two differ only by a constant factor of ve).
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The total fuel consumption is calculated via the following equation, and also repre-

sents the cost function to be minimized:

J =
∫ t f

0
ṁ(t)dt = m(0)−m(t f ). (2.4)

Where some final time t f is left unconstrained. The variable t f is also used to define the terminal

boundary conditions of a soft-landing:

x(t f ) = 0; ẋ(t f ) = 0. (2.5)

Together, equations 2.2, 2.4, and 2.5 define the basic form of the one-dimensional soft-landing

problem.

2.1 Meditch’s Switching Function

Meditch (1964) serves as a baseline and historic reference for soft-landing guidance

research. Published near the onset of the Apollo program, Meditch analytically optimized the

one-dimensional powered descent guidance problem.

The method includes first combining of equations 2.1 and 2.4 yeilding:

J = m(0)
(

1− exp
[

ẋ(0)−gt f

ve

])
. (2.6)

And next, true insight is gained by recognizing that for a given m(0), ẋ(0), g, and ve, J is a

monotonically increasing function of t f and thus, minimizing t f is equivalent to minimizing

fuel consumption (Meditch, 1964).
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Using the Pontryagin maximum principle to optimize the system, It is found that

the optimal control equation takes the form of a step function (Meditch, 1964). Physically,

this translates to a period of free fall with no control input, abruptly followed by a period of

maximum thrust and deceleration.

The switching point is determined when the following function changes from a posi-

tive value to 0 (Meditch, 1964):

f (x1,x2) =
b
a

x1 +2a
√

x1

a
+ x2 (2.7)

with the a and b parameters defined as:

a =
1
2

(
ve(−ṁ)−gM0

M0

)
(2.8)

b =
ve(ṁ)2

2M2
0

. (2.9)

Thus, the fuel optimal one-dimensional soft-landing guidance scheme is proven to be a switch

from 0 to full thrust, governed by equation 2.7.

2.2 Apollo Guidance in 1D

As flown, the Apollo powered descent guidance scheme assumed the magnitude of

each component of the thrust acceleration vector to be a quadratic function of time (Klumpp,

1974). Thus for each of the component directions the acceleration profile would take the form

of:
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a(t) =C0 +C1t +C2t2. (2.10)

Integrating equation 2.10 to determine the velocity and altitude profiles as functions of time,

while observing the initial and final conditions yields analytic solutions for the C0, C1, and C2

constants (Steinfeldt et al., 2008):

C0 = a f −
6

tgo
(v f + v0)+12(x f − x0) (2.11)

C1 =−
6

tgo
a f +

6
t2
go
(5v f +3v0)−

48
t3
go
(x f − x0) (2.12)

C2 =
6

t2
go

a f −
12
t3
go
(2v f + v0)+

36
t4
go
(x f − x0), (2.13)

where tgo represents the travel time left between the current and final states. The value of tgo

can be solved analytically if the acceleration profile is further simplified to a linear function of

time (C2 = 0). This linear approach is widely referred to as E-guidance as is identical to the

one-dimensional adaptation of the APDG law if a f is set to be 0. This is a reasonable require-

ment in the applications of guidance laws since powered descent maneuvers typically include

a final constant-velocity touch down phase just before surface contact. The difference between

these two methods (E-guidance and APDG) is more apparent in three-dimensions where the

APDG law’s quadratic acceleration profile requires a final acceleration state vector to be speci-

fied aT (t f ), which includes both a magnitude and direction.
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Returning to the one-dimensional case, tgo can be solved for as follows (Wong et al.,

2002):

tgo =
2v f + v0

a f
+

[(
2v f + v0

a f

)2

+
6
a f

(x0− x f )

]1/2

, a f 6= 0 (2.14)

tgo = 3
r f − r0

2v f + v0
, a f = 0. (2.15)

Given that a f = 0 and setting the soft-landing conditions v f = 0 and x f = 0, equations 2.10,

2.11, 2.12, and 2.15 can be combined to determine an acceleration profile:

a(t) =
2
3

v2
0

x0
+

2
9

v3
0

x2
0
t. (2.16)

This profile is constantly updated with the state of system defined by the current altitude x0 and

altitude rate v0. It is important to note that in the vicinity of the surface tgo→ 0 and in this limit,

the coefficients C1 and C2 become singularities. The work-around is to record the last time the

Ci constants were calculated (denoted as tC) and use the formula (Wong et al., 2002):

a(t) =C0 +C1(t− tC)+C2(t− tC)2. (2.17)

Therefore, an acceleration profile can be calculated at any state, and a commanded thrust (Tc)

can be derived by substituting the derived acceleration into the dynamic equation:

Tc = m(a−g) (2.18)
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Thus the APDG method is defined as an explicit guidance law (capable of calculating

a full trajectory profile based on only the state of the system) with the assumption that the

acceleration profile is a quadratic function of time.

2.3 Numerical 1D Demonstration

To provide more insight into the operation of the one-dimensional formulations of the

APDG and Meditch methods, both are applied to an example lunar descent scenario described in

Table 2.1. The dynamics of the system is simulated using a discretized forward Euler integration

method.

Symbol Value
Local Surface Gravity g -1.62 m/s2

Effective Exhaust Velocity ve 3050 m/s
Initial Vehicle Mass M0 6000 kg
Maximum Thrust Tmax 45 kN
Initial Altitude xi 500 m
Initial Altitude Rate vi -30 m/s
Final Altitude Target x f 0 m
Final Altitude Rate Target v f 0 m/s

Table 2.1: Vehicle and initial state parameters used in the example 1D lunar descent simulation

Figure 2.2 depicts the thrust control profiles results from a one-dimensional applica-

tion of the Meditch and Apollo methods to the example lunar descent scenario. Notably during

the initial phase of the APDG descent, the commanded thrust approaches 0. While the de-

scent propulsion system of the Apollo lander was designed to be deeply throttle-able (down to

10% of maximum thrust) the guidance law still issues infeasible commands. A similar control

saturation is apparent during the final approach phase resulting in a plateau of maximum thrust.
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Figure 2.2: Thrust control profiles of the one-dimensional fuel optimal Meditch switch func-
tion (in red) and the Apollo guidance algorithm (in blue) applied to the example lunar descent
scenario

Figure 2.3 depicts the descent rates of these two methods plotted against altitude.

Note that the simulated APDG trajectory shape is in good agreement with the reference, Figure

19 of Bennett (1970). Figure 2.3 also graphically represents the risk of practically implementing

an optimal switching technique. A slight error in powered descent initiation (PDI) can lead to

irreversible crashing descent scenarios. In figure 2.3, the sharp corners of each trajectory (at

∼170m for the Meditch method and ∼40m for the APDG method) indicate the last possible

opportunities to abort the descent.

Ultimately, the simulation shows that the optimal Meditch switching trajectory con-

sumed 33% less propellant than the Apollo guidance path. However, this comparison highlights

11



Figure 2.3: A plot of the descent rate versus altitude profiles of the one-dimensional fuel optimal
Meditch switch function (in red) and the Apollo guidance algorithm (in blue) applied to the
example lunar descent scenario. Note that the Apollo trajectory shape is in good agreement
with figure 19 of Bennett (1970).

the fact that fuel consumption does not overshadow all factor considered in the selection of a

guidance method. APDG was developed to maximize the allowable abort time to safeguard the

astronauts on-board (Bennett, 1970).
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Chapter 3

Augmented Apollo Powered Descent

Guidance (A2PDG)

The soft-landing problem in three dimensions can be stated as follows: given the

system dynamics,

ẋ = v; v̇ = g+aT (3.1)

and current measurable state values, x(t) and v(t), solve for the thrust command aT(t) to ma-

neuver the vehicle to a final state, x f and v f (Note that these quantities are now represented as

vectors).

In a similar fashion to equation 2.10, the derivation of the A2PDG law begins with

the assumption that acceleration is a quadratic function of time in each component direction:
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a(t) = C0 +C1t +C2t2 (3.2)

By specifying a boundary acceleration constraint af, the 3D APDG law follows:

a(t) =− 6
tgo

[vf−v(t)]+
12
t2
go
[x f −x(t)−v(t)tgo]+a f . (3.3)

This formula is modified and relaxed, adopting the form of an implicit guidance law and defin-

ing the A2PDG method (Lu, 2018):

a(t) = ad(t)−
kv

tgo
[v(t)−vd(t)]−

kr

t2
go
[x(t)−xd(t)] (3.4)

where kv and kr representing adjustable gain values, while the subscript d denotes references to

a predetermined ideal profiles. Implicit guidance laws generate commands based on references

(in this case, ideal position, velocity, and acceleration descent profiles) as opposed to explicit

guidance laws which enforce targeting conditions.

If ad is assumed to be a quadratic function of time, and hence vd to be cubic, setting

kv = 6 and kr = 12, equation 3.4 returns the APDG law (equation 3.3) (Lu, 2018). A2PDG

maintains the aforementioned constraints on the acceleration and velocity profiles and combines

the gain values (kv and kr) into one tunable parameter, kr. The result is the following guidance

law (Lu, 2018):

a(t) =
2

tgo

(
1− 1

3
kr

)
[v f −v(t)]+

kr

t2
go
[x f −x(t)−v(t)tgo]+

1
6
(kr−6)a f +

1
6
(kr−12)g. (3.5)
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Varying the gain parameter, kr serves as a trade between trajectory shaping and pro-

pellant consumption. Notably, the limits of kr are bounded by 6 ≤ kr ≤ 12. Setting kr = 6, a f

cancels from the equation 3.5 and therefore reduces to E-guidance. If kr = 12, g is removed

from equation 3.5 and thus the original APDG law is recovered.

D’Souza (1997) shows that a guidance law that is a linear function of the initial and

final states including a non-linear time to-go variable, specifically:

a =−4
v(t)−v f

tgo
−6

x(t)−x f

t2
go

−g (3.6)

is optimal with respect to the performance index:

J = Γt f +
1
2

∫ t f

t0
‖aT‖2dt (3.7)

where Γ is a weighted final time parameter. Note that D’Souza’s guidance law (equation 3.6) is

a special case of equation 3.4 with kv = 4 and kr = 6, and thus lies within the adjustable family of

guidance laws described by A2PDG. However, it is important to recognize that the performance

index (equation 3.7) does not represent strict fuel minimization that would be described by the

performance index:

J =
∫ t f

t0
‖aT‖dt (3.8)

Thus, the tune-ability of A2PDG does not necessarily represent a direct trade between

trajectory shaping and fuel optimization, but rather the optimality of a closely related problem.
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Chapter 4

The Second-Order Cone Programming

(SOCP) Based Guidance Method

Thus far, the guidance methods presented divided the three-dimensional soft-landing

problem into three separate component systems of equations; the SOCP method adopts a dif-

ferent approach. The SOCP guidance method as proposed by Akmee et al. (2013), includes

constraints limiting the vehicle to a region above the target landing site defined by a glide slope

(in order to avoid trajectories near or along the surface), and an upper velocity limit. The con-

straints on the control input (commanded thrust) limit the magnitude to be between extrema:

0≤ ‖Tmin‖ ≤ ‖T(t)‖ ≤ ‖Tmax‖. (4.1)

A thrust pointing constraint is also included:
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n̂T Tc(t)
‖Tc(t)‖

≥ cos(θ). (4.2)

In equation 4.2, n̂T represents a unitary pointing direction vector, while θ representing the

maximum allowable deviation of the controlled thrust vector from this direction. Since the

method models the vehicle as a point mass, this constraint is included in the place of explicit

attitude limits. The separation of translation and attitude control is reasonable to assume since

attitude correction maneuvers can be executed within a time scale significantly smaller than

translations.

The SOCP method is implemented in two phases. First, leaving the remaining time of

flight unconstrained, the landing distance error in minimized by solving the following problem

(Akmee et al., 2013):

min
t f ,TC
‖x(t f )−q‖ (4.3)

subject to:

ẋ(t) = A(ω)x(t)+B
(

g+
Tc(t)

m

)
; ṁ(t) =−α‖Tc(t)‖ (4.4)

x(t) ∈ X (4.5)

and the typical soft-landing boundary constraints: eT
1 x(t f ) = 0 and ẋ(t f ) = 0 in addition to

equations 4.1 and equation 4.2. In equation 4.3, q represents the targeted landing point, while A

and B in equation 4.4 represent matrices that account for the effects of the planet’s rotation on
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the dynamics of the system. The fuel consumption rate is represented by α. Equation 4.5 is the

glide slope constraint previously mentioned, bounding x(t) within the region X. It is important

to recognize that multiple solution trajectories could exist such that they all reach the same

landing error. The next step would be to minimizes the fuel consumption to select the optimal

trajectory, however, the lower bound on the magnitude of the control thrust in equation 4.1 is a

non-convex constraints.

Non-convex constraints pose an issue to global optimization problems. They have

the potential to split a problem into multiple feasible regions and enable local optimal solutions

within the parameter search space. Determining if a non-convex optimization problem is feasi-

ble and that a solution is globally optimal can be computationally taxing. Akmee et al. (2013)

present an ingenious method of transforming the minimum thrust constraint from non-convex

to convex by relaxing the problem through the introduction a new parameter, Γ(t) that functions

similar to an upper limit on the magnitude of the thrust. To complete the convexification of

the entire problem, a relaxed form of the landing error constraint is adopted during the fuel

optimization step. The reframed problem follows (Akmee et al., 2013):

min
t f ,TC,Γ

‖x(t f )−q‖ (4.6)

subject to:

ẋ(t) = A(ω)x(t)+B
(

g+
Tc(t)

m

)
; ṁ(t) =−αΓ(t) (4.7)
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‖Tc‖ ≤ Γ(t); 0≤ ‖Tmin‖ ≤ Γ(t)≤ ‖Tmax‖ (4.8)

n̂T Tc(t)≥ Γ(t)cos(θ) (4.9)

and equation 4.5 in addition to the typical soft-landing boundary constraints mentioned previ-

ously. Continuing, the fuel optimization step involves (Akmee et al., 2013):

min
t f ,TC,Γ

∫ t f

t0
Γ(t)dt (4.10)

subject to equations 4.7, 4.8, 4.9, and:

‖x(t f )−q‖ ≤ ‖dmin−q‖ (4.11)

where dmin represents the minimum landing distance error calculated in the previous step. Note

that equation 4.11 represents a relaxation of the terminal landing location which is necessary to

keep the problem convex. Even with this modification, the solution will remain optimal with

regards to landing error because the minimal reachable landing error lies on the boundary of the

space described by equation 4.11, that otherwise contains unreachable landing locations.

The landing error and fuel optimization steps can be discretized, and in addition to

a change of variables, both be posed as second-order cone programming (SOCP) problems

(Acikmese and Ploen, 2007). SOCP problems are more broadly studied within optimization

research and are well known to be efficiently solved via interior point methods (IPMs). IPMs

converge within a tolerance of the optimum solution within a finite, known number of iterations
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(Steinfeldt et al., 2008). IPMs also converge with polynomial time complexity (which is a

measure of how long an algorithm will take to execute as a function of the size of the input),

thus giving the SOCP method an advantage over alternative iterative optimization methods.

Ultimately, the SOCP guidance technique generates landing error and fuel optimized

feasible trajectories, observing the most physically representative constraints of any guidance

method mentioned thus far, while guaranteeing convergence to said optimal solution in a finite,

predictable time. Only made possible by recent developments, the SOCP method has yet to be

applied to a planetary exploration mission descent, but shows promising potential.
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Chapter 5

A Comparison of Guidance Algorithms

Figure 5.1 represents a complete block diagram of a general guidance control system.

Figure 5.1: Schematic of a guidance control system (Wong et al., 2002)
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For a given vehicle and mission, this diagram would be identical for different guid-

ance methods with the exception of how the steps within the dotted boundary, “Guidance Al-

gorithm” and “Attitude Commander” are defined. Focusing on the guidance algorithm, the fol-

lowing block diagrams represent a further detailed breakdown of each guidance method studied

in this paper.

Figure 5.2: Meditch Block schematic

Figure 5.2, The Meditch switching method is purely dependent on recognizing when

condition are met to initiate a full thrust burn. Perhaps the simplest form of powered descent

guidance, the Meditch switching method has the benefit of proven fuel optimally in one dimen-

sion. However, this technique does not accommodate trajectory shaping.

Figure 5.3: APDG Block schematic
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The APDG method (Figure 5.3) incorporates trajectory shaping into its guidance al-

gorithm, which while not fuel optimal, minimizes a performance metric closely related to fuel

consumption. The APDG as developed is a explicit guidance method based around an assump-

tion of a quadratic acceleration profile. APDG is noteworthy for its simplicity, but at the cost of

control saturation (commanding thrust beyond the capabilities of the vehicle).

Figure 5.4: A2PDG Block schematic

A2PDG builds upon APDG transforming, into a tunable implicit guidance algorithm

described by 5.4. Within the A2PDG frame work, mission designers are provided the freedom

to trade between propellant consumption and trajectory shaping, however the trajectory is based

on a predetermined profile.

Figure 5.5: SOCP Block schematic
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The SOCP method (Figure 5.5) as presented is the most complete guidance algorithm

of all. The SOCP method accounts for the minimum thrust control constraint and planet rota-

tion, while generating guaranteed achievable control profiles in a finite, predictable number of

iterations. SOCP also includes methods to adapt the trajectory if the pinpoint target is unreach-

able. SOCP minimizes the landing distance error and then generates a fuel optimized trajectory

to reach a landing point at that distance.

While A2PDG and others like it offer computation simplicity and heritage, SOCP of-

fers the most complete approach to solving the powered descent guidance problem, performance

benefits and added robustness.
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Chapter 6

Conclusion

A2PDG offers the heritage of the flight proven APDG technique in the form of a

repackaged, tunable implicit guidance law. The iterative, explicit SOCP method, while more

computationally intensive than A2PDG, offers significant performance gains while accounting

for the most representative constraints of the techniques studied. However, the adoption of the

A2PDG method does not necessarily lead to a more simplistic guidance algorithm compared

to a SOCP equivalent system. Techniques such as A2PDG often require additional guidance

routines such as powered descent initiation.

The SOCP guidance method, while not flight proven within the context of a planetary

exploration mission, show great potential regarding optimality, robustness, and feasibility. The

work of Akmee et al. (2013) has significantly improved the practicality of incorporating such a

method into future missions.

In a direct comparison, A2PDG offers heritage in place of SOCP’s superior modern
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optimization approach. A2PDG has the advantage of computational simplicity in comparison

to the iterative process of IPM incorporated into the SOCP method. While computation re-

sources may have limited space exploration missions of the past, the modern power of on-board

guidance computers is extremely capable.

In the immediate future at the time this paper was written, the Mars 2020 rover will

represent the next demonstration of powered descent guidance. Suprisingly, the powered de-

scent phase of the Mars Science Laboratory architecture (on which the Curiosity and Mars

2020 rovers are based) does not claim any fuel optimality, but rather

“...the emphasis instead was on ease of analysis and, hence, ease of Validation and
Verification of the system performance in the presence of altitude estimate errors
due to terrain relief” (Dwyer Cianciolo, 2017).

Through a widespread understanding of optimization guidance methods and refinement of the

analysis techniques used to study them, fuel optimization can become a primary focus of pow-

ered descent system design. This is critically important as the evolving demands of space ex-

ploration missions require evermore refined and robust EDL capabilities.
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